Spaces:
Runtime error
Runtime error
File size: 15,256 Bytes
129cd69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
"""Module contains a PDF parser based on Document AI from Google Cloud.
You need to install two libraries to use this parser:
pip install google-cloud-documentai
pip install google-cloud-documentai-toolbox
"""
import logging
import re
import time
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterator, List, Optional, Sequence
from langchain_core.utils.iter import batch_iterate
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseBlobParser
from langchain.document_loaders.blob_loaders import Blob
from langchain.utilities.vertexai import get_client_info
if TYPE_CHECKING:
from google.api_core.operation import Operation
from google.cloud.documentai import DocumentProcessorServiceClient
logger = logging.getLogger(__name__)
@dataclass
class DocAIParsingResults:
"""A dataclass to store Document AI parsing results."""
source_path: str
parsed_path: str
class DocAIParser(BaseBlobParser):
"""`Google Cloud Document AI` parser.
For a detailed explanation of Document AI, refer to the product documentation.
https://cloud.google.com/document-ai/docs/overview
"""
def __init__(
self,
*,
client: Optional["DocumentProcessorServiceClient"] = None,
location: Optional[str] = None,
gcs_output_path: Optional[str] = None,
processor_name: Optional[str] = None,
):
"""Initializes the parser.
Args:
client: a DocumentProcessorServiceClient to use
location: a Google Cloud location where a Document AI processor is located
gcs_output_path: a path on Google Cloud Storage to store parsing results
processor_name: full resource name of a Document AI processor or processor
version
You should provide either a client or location (and then a client
would be instantiated).
"""
if bool(client) == bool(location):
raise ValueError(
"You must specify either a client or a location to instantiate "
"a client."
)
pattern = r"projects\/[0-9]+\/locations\/[a-z\-0-9]+\/processors\/[a-z0-9]+"
if processor_name and not re.fullmatch(pattern, processor_name):
raise ValueError(
f"Processor name {processor_name} has the wrong format. If your "
"prediction endpoint looks like https://us-documentai.googleapis.com"
"/v1/projects/PROJECT_ID/locations/us/processors/PROCESSOR_ID:process,"
" use only projects/PROJECT_ID/locations/us/processors/PROCESSOR_ID "
"part."
)
self._gcs_output_path = gcs_output_path
self._processor_name = processor_name
if client:
self._client = client
else:
try:
from google.api_core.client_options import ClientOptions
from google.cloud.documentai import DocumentProcessorServiceClient
except ImportError as exc:
raise ImportError(
"documentai package not found, please install it with"
" `pip install google-cloud-documentai`"
) from exc
options = ClientOptions(
api_endpoint=f"{location}-documentai.googleapis.com"
)
self._client = DocumentProcessorServiceClient(
client_options=options,
client_info=get_client_info(module="document-ai"),
)
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Parses a blob lazily.
Args:
blobs: a Blob to parse
This is a long-running operation. A recommended way is to batch
documents together and use the `batch_parse()` method.
"""
yield from self.batch_parse([blob], gcs_output_path=self._gcs_output_path)
def online_process(
self,
blob: Blob,
enable_native_pdf_parsing: bool = True,
field_mask: Optional[str] = None,
page_range: Optional[List[int]] = None,
) -> Iterator[Document]:
"""Parses a blob lazily using online processing.
Args:
blob: a blob to parse.
enable_native_pdf_parsing: enable pdf embedded text extraction
field_mask: a comma-separated list of which fields to include in the
Document AI response.
suggested: "text,pages.pageNumber,pages.layout"
page_range: list of page numbers to parse. If `None`,
entire document will be parsed.
"""
try:
from google.cloud import documentai
from google.cloud.documentai_v1.types import (
IndividualPageSelector,
OcrConfig,
ProcessOptions,
)
except ImportError as exc:
raise ImportError(
"documentai package not found, please install it with"
" `pip install google-cloud-documentai`"
) from exc
try:
from google.cloud.documentai_toolbox.wrappers.page import _text_from_layout
except ImportError as exc:
raise ImportError(
"documentai_toolbox package not found, please install it with"
" `pip install google-cloud-documentai-toolbox`"
) from exc
ocr_config = (
OcrConfig(enable_native_pdf_parsing=enable_native_pdf_parsing)
if enable_native_pdf_parsing
else None
)
individual_page_selector = (
IndividualPageSelector(pages=page_range) if page_range else None
)
response = self._client.process_document(
documentai.ProcessRequest(
name=self._processor_name,
gcs_document=documentai.GcsDocument(
gcs_uri=blob.path,
mime_type=blob.mimetype or "application/pdf",
),
process_options=ProcessOptions(
ocr_config=ocr_config,
individual_page_selector=individual_page_selector,
),
skip_human_review=True,
field_mask=field_mask,
)
)
yield from (
Document(
page_content=_text_from_layout(page.layout, response.document.text),
metadata={
"page": page.page_number,
"source": blob.path,
},
)
for page in response.document.pages
)
def batch_parse(
self,
blobs: Sequence[Blob],
gcs_output_path: Optional[str] = None,
timeout_sec: int = 3600,
check_in_interval_sec: int = 60,
) -> Iterator[Document]:
"""Parses a list of blobs lazily.
Args:
blobs: a list of blobs to parse.
gcs_output_path: a path on Google Cloud Storage to store parsing results.
timeout_sec: a timeout to wait for Document AI to complete, in seconds.
check_in_interval_sec: an interval to wait until next check
whether parsing operations have been completed, in seconds
This is a long-running operation. A recommended way is to decouple
parsing from creating LangChain Documents:
>>> operations = parser.docai_parse(blobs, gcs_path)
>>> parser.is_running(operations)
You can get operations names and save them:
>>> names = [op.operation.name for op in operations]
And when all operations are finished, you can use their results:
>>> operations = parser.operations_from_names(operation_names)
>>> results = parser.get_results(operations)
>>> docs = parser.parse_from_results(results)
"""
output_path = gcs_output_path or self._gcs_output_path
if not output_path:
raise ValueError(
"An output path on Google Cloud Storage should be provided."
)
operations = self.docai_parse(blobs, gcs_output_path=output_path)
operation_names = [op.operation.name for op in operations]
logger.debug(
"Started parsing with Document AI, submitted operations %s", operation_names
)
time_elapsed = 0
while self.is_running(operations):
time.sleep(check_in_interval_sec)
time_elapsed += check_in_interval_sec
if time_elapsed > timeout_sec:
raise TimeoutError(
"Timeout exceeded! Check operations " f"{operation_names} later!"
)
logger.debug(".")
results = self.get_results(operations=operations)
yield from self.parse_from_results(results)
def parse_from_results(
self, results: List[DocAIParsingResults]
) -> Iterator[Document]:
try:
from google.cloud.documentai_toolbox.utilities.gcs_utilities import (
split_gcs_uri,
)
from google.cloud.documentai_toolbox.wrappers.document import _get_shards
from google.cloud.documentai_toolbox.wrappers.page import _text_from_layout
except ImportError as exc:
raise ImportError(
"documentai_toolbox package not found, please install it with"
" `pip install google-cloud-documentai-toolbox`"
) from exc
for result in results:
gcs_bucket_name, gcs_prefix = split_gcs_uri(result.parsed_path)
shards = _get_shards(gcs_bucket_name, gcs_prefix)
yield from (
Document(
page_content=_text_from_layout(page.layout, shard.text),
metadata={"page": page.page_number, "source": result.source_path},
)
for shard in shards
for page in shard.pages
)
def operations_from_names(self, operation_names: List[str]) -> List["Operation"]:
"""Initializes Long-Running Operations from their names."""
try:
from google.longrunning.operations_pb2 import (
GetOperationRequest, # type: ignore
)
except ImportError as exc:
raise ImportError(
"long running operations package not found, please install it with"
" `pip install gapic-google-longrunning`"
) from exc
return [
self._client.get_operation(request=GetOperationRequest(name=name))
for name in operation_names
]
def is_running(self, operations: List["Operation"]) -> bool:
return any(not op.done() for op in operations)
def docai_parse(
self,
blobs: Sequence[Blob],
*,
gcs_output_path: Optional[str] = None,
processor_name: Optional[str] = None,
batch_size: int = 1000,
enable_native_pdf_parsing: bool = True,
field_mask: Optional[str] = None,
) -> List["Operation"]:
"""Runs Google Document AI PDF Batch Processing on a list of blobs.
Args:
blobs: a list of blobs to be parsed
gcs_output_path: a path (folder) on GCS to store results
processor_name: name of a Document AI processor.
batch_size: amount of documents per batch
enable_native_pdf_parsing: a config option for the parser
field_mask: a comma-separated list of which fields to include in the
Document AI response.
suggested: "text,pages.pageNumber,pages.layout"
Document AI has a 1000 file limit per batch, so batches larger than that need
to be split into multiple requests.
Batch processing is an async long-running operation
and results are stored in a output GCS bucket.
"""
try:
from google.cloud import documentai
from google.cloud.documentai_v1.types import OcrConfig, ProcessOptions
except ImportError as exc:
raise ImportError(
"documentai package not found, please install it with"
" `pip install google-cloud-documentai`"
) from exc
output_path = gcs_output_path or self._gcs_output_path
if output_path is None:
raise ValueError(
"An output path on Google Cloud Storage should be provided."
)
processor_name = processor_name or self._processor_name
if processor_name is None:
raise ValueError("A Document AI processor name should be provided.")
operations = []
for batch in batch_iterate(size=batch_size, iterable=blobs):
input_config = documentai.BatchDocumentsInputConfig(
gcs_documents=documentai.GcsDocuments(
documents=[
documentai.GcsDocument(
gcs_uri=blob.path,
mime_type=blob.mimetype or "application/pdf",
)
for blob in batch
]
)
)
output_config = documentai.DocumentOutputConfig(
gcs_output_config=documentai.DocumentOutputConfig.GcsOutputConfig(
gcs_uri=output_path, field_mask=field_mask
)
)
process_options = (
ProcessOptions(
ocr_config=OcrConfig(
enable_native_pdf_parsing=enable_native_pdf_parsing
)
)
if enable_native_pdf_parsing
else None
)
operations.append(
self._client.batch_process_documents(
documentai.BatchProcessRequest(
name=processor_name,
input_documents=input_config,
document_output_config=output_config,
process_options=process_options,
skip_human_review=True,
)
)
)
return operations
def get_results(self, operations: List["Operation"]) -> List[DocAIParsingResults]:
try:
from google.cloud.documentai_v1 import BatchProcessMetadata
except ImportError as exc:
raise ImportError(
"documentai package not found, please install it with"
" `pip install google-cloud-documentai`"
) from exc
return [
DocAIParsingResults(
source_path=status.input_gcs_source,
parsed_path=status.output_gcs_destination,
)
for op in operations
for status in (
op.metadata.individual_process_statuses
if isinstance(op.metadata, BatchProcessMetadata)
else BatchProcessMetadata.deserialize(
op.metadata.value
).individual_process_statuses
)
]
|