Spaces:
Runtime error
Runtime error
File size: 8,911 Bytes
129cd69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import base64
import warnings
from typing import Any, Dict, Iterator, List, Optional
import requests
from langchain_core.pydantic_v1 import BaseModel, root_validator, validator
from typing_extensions import NotRequired, TypedDict
from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseBlobParser, BaseLoader
from langchain.document_loaders.blob_loaders import Blob
from langchain.text_splitter import TextSplitter
from langchain.utils import get_from_dict_or_env
EMBAAS_DOC_API_URL = "https://api.embaas.io/v1/document/extract-text/bytes/"
class EmbaasDocumentExtractionParameters(TypedDict):
"""Parameters for the embaas document extraction API."""
mime_type: NotRequired[str]
"""The mime type of the document."""
file_extension: NotRequired[str]
"""The file extension of the document."""
file_name: NotRequired[str]
"""The file name of the document."""
should_chunk: NotRequired[bool]
"""Whether to chunk the document into pages."""
chunk_size: NotRequired[int]
"""The maximum size of the text chunks."""
chunk_overlap: NotRequired[int]
"""The maximum overlap allowed between chunks."""
chunk_splitter: NotRequired[str]
"""The text splitter class name for creating chunks."""
separators: NotRequired[List[str]]
"""The separators for chunks."""
should_embed: NotRequired[bool]
"""Whether to create embeddings for the document in the response."""
model: NotRequired[str]
"""The model to pass to the Embaas document extraction API."""
instruction: NotRequired[str]
"""The instruction to pass to the Embaas document extraction API."""
class EmbaasDocumentExtractionPayload(EmbaasDocumentExtractionParameters):
"""Payload for the Embaas document extraction API."""
bytes: str
"""The base64 encoded bytes of the document to extract text from."""
class BaseEmbaasLoader(BaseModel):
"""Base loader for `Embaas` document extraction API."""
embaas_api_key: Optional[str] = None
"""The API key for the Embaas document extraction API."""
api_url: str = EMBAAS_DOC_API_URL
"""The URL of the Embaas document extraction API."""
params: EmbaasDocumentExtractionParameters = EmbaasDocumentExtractionParameters()
"""Additional parameters to pass to the Embaas document extraction API."""
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
embaas_api_key = get_from_dict_or_env(
values, "embaas_api_key", "EMBAAS_API_KEY"
)
values["embaas_api_key"] = embaas_api_key
return values
class EmbaasBlobLoader(BaseEmbaasLoader, BaseBlobParser):
"""Load `Embaas` blob.
To use, you should have the
environment variable ``EMBAAS_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
# Default parsing
from langchain.document_loaders.embaas import EmbaasBlobLoader
loader = EmbaasBlobLoader()
blob = Blob.from_path(path="example.mp3")
documents = loader.parse(blob=blob)
# Custom api parameters (create embeddings automatically)
from langchain.document_loaders.embaas import EmbaasBlobLoader
loader = EmbaasBlobLoader(
params={
"should_embed": True,
"model": "e5-large-v2",
"chunk_size": 256,
"chunk_splitter": "CharacterTextSplitter"
}
)
blob = Blob.from_path(path="example.pdf")
documents = loader.parse(blob=blob)
"""
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Parses the blob lazily.
Args:
blob: The blob to parse.
"""
yield from self._get_documents(blob=blob)
@staticmethod
def _api_response_to_documents(chunks: List[Dict[str, Any]]) -> List[Document]:
"""Convert the API response to a list of documents."""
docs = []
for chunk in chunks:
metadata = chunk["metadata"]
if chunk.get("embedding", None) is not None:
metadata["embedding"] = chunk["embedding"]
doc = Document(page_content=chunk["text"], metadata=metadata)
docs.append(doc)
return docs
def _generate_payload(self, blob: Blob) -> EmbaasDocumentExtractionPayload:
"""Generates payload for the API request."""
base64_byte_str = base64.b64encode(blob.as_bytes()).decode()
payload: EmbaasDocumentExtractionPayload = EmbaasDocumentExtractionPayload(
bytes=base64_byte_str,
# Workaround for mypy issue: https://github.com/python/mypy/issues/9408
# type: ignore
**self.params,
)
if blob.mimetype is not None and payload.get("mime_type", None) is None:
payload["mime_type"] = blob.mimetype
return payload
def _handle_request(
self, payload: EmbaasDocumentExtractionPayload
) -> List[Document]:
"""Sends a request to the embaas API and handles the response."""
headers = {
"Authorization": f"Bearer {self.embaas_api_key}",
"Content-Type": "application/json",
}
response = requests.post(self.api_url, headers=headers, json=payload)
response.raise_for_status()
parsed_response = response.json()
return EmbaasBlobLoader._api_response_to_documents(
chunks=parsed_response["data"]["chunks"]
)
def _get_documents(self, blob: Blob) -> Iterator[Document]:
"""Get the documents from the blob."""
payload = self._generate_payload(blob=blob)
try:
documents = self._handle_request(payload=payload)
except requests.exceptions.RequestException as e:
if e.response is None or not e.response.text:
raise ValueError(
f"Error raised by Embaas document text extraction API: {e}"
)
parsed_response = e.response.json()
if "message" in parsed_response:
raise ValueError(
f"Validation Error raised by Embaas document text extraction API:"
f" {parsed_response['message']}"
)
raise
yield from documents
class EmbaasLoader(BaseEmbaasLoader, BaseLoader):
"""Load from `Embaas`.
To use, you should have the
environment variable ``EMBAAS_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
# Default parsing
from langchain.document_loaders.embaas import EmbaasLoader
loader = EmbaasLoader(file_path="example.mp3")
documents = loader.load()
# Custom api parameters (create embeddings automatically)
from langchain.document_loaders.embaas import EmbaasBlobLoader
loader = EmbaasBlobLoader(
file_path="example.pdf",
params={
"should_embed": True,
"model": "e5-large-v2",
"chunk_size": 256,
"chunk_splitter": "CharacterTextSplitter"
}
)
documents = loader.load()
"""
file_path: str
"""The path to the file to load."""
blob_loader: Optional[EmbaasBlobLoader]
"""The blob loader to use. If not provided, a default one will be created."""
@validator("blob_loader", always=True)
def validate_blob_loader(
cls, v: EmbaasBlobLoader, values: Dict
) -> EmbaasBlobLoader:
return v or EmbaasBlobLoader(
embaas_api_key=values["embaas_api_key"],
api_url=values["api_url"],
params=values["params"],
)
def lazy_load(self) -> Iterator[Document]:
"""Load the documents from the file path lazily."""
blob = Blob.from_path(path=self.file_path)
assert self.blob_loader is not None
# Should never be None, but mypy doesn't know that.
yield from self.blob_loader.lazy_parse(blob=blob)
def load(self) -> List[Document]:
return list(self.lazy_load())
def load_and_split(
self, text_splitter: Optional[TextSplitter] = None
) -> List[Document]:
if self.params.get("should_embed", False):
warnings.warn(
"Embeddings are not supported with load_and_split."
" Use the API splitter to properly generate embeddings."
" For more information see embaas.io docs."
)
return super().load_and_split(text_splitter=text_splitter)
|