File size: 5,888 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import csv
from io import TextIOWrapper
from typing import Any, Dict, List, Optional, Sequence

from langchain.docstore.document import Document
from langchain.document_loaders.base import BaseLoader
from langchain.document_loaders.helpers import detect_file_encodings
from langchain.document_loaders.unstructured import (
    UnstructuredFileLoader,
    validate_unstructured_version,
)


class CSVLoader(BaseLoader):
    """Load a `CSV` file into a list of Documents.

    Each document represents one row of the CSV file. Every row is converted into a
    key/value pair and outputted to a new line in the document's page_content.

    The source for each document loaded from csv is set to the value of the
    `file_path` argument for all documents by default.
    You can override this by setting the `source_column` argument to the
    name of a column in the CSV file.
    The source of each document will then be set to the value of the column
    with the name specified in `source_column`.

    Output Example:
        .. code-block:: txt

            column1: value1
            column2: value2
            column3: value3
    """

    def __init__(
        self,
        file_path: str,
        source_column: Optional[str] = None,
        metadata_columns: Sequence[str] = (),
        csv_args: Optional[Dict] = None,
        encoding: Optional[str] = None,
        autodetect_encoding: bool = False,
    ):
        """

        Args:
            file_path: The path to the CSV file.
            source_column: The name of the column in the CSV file to use as the source.
              Optional. Defaults to None.
            metadata_columns: A sequence of column names to use as metadata. Optional.
            csv_args: A dictionary of arguments to pass to the csv.DictReader.
              Optional. Defaults to None.
            encoding: The encoding of the CSV file. Optional. Defaults to None.
            autodetect_encoding: Whether to try to autodetect the file encoding.
        """
        self.file_path = file_path
        self.source_column = source_column
        self.metadata_columns = metadata_columns
        self.encoding = encoding
        self.csv_args = csv_args or {}
        self.autodetect_encoding = autodetect_encoding

    def load(self) -> List[Document]:
        """Load data into document objects."""

        docs = []
        try:
            with open(self.file_path, newline="", encoding=self.encoding) as csvfile:
                docs = self.__read_file(csvfile)
        except UnicodeDecodeError as e:
            if self.autodetect_encoding:
                detected_encodings = detect_file_encodings(self.file_path)
                for encoding in detected_encodings:
                    try:
                        with open(
                            self.file_path, newline="", encoding=encoding.encoding
                        ) as csvfile:
                            docs = self.__read_file(csvfile)
                            break
                    except UnicodeDecodeError:
                        continue
            else:
                raise RuntimeError(f"Error loading {self.file_path}") from e
        except Exception as e:
            raise RuntimeError(f"Error loading {self.file_path}") from e

        return docs

    def __read_file(self, csvfile: TextIOWrapper) -> List[Document]:
        docs = []

        csv_reader = csv.DictReader(csvfile, **self.csv_args)  # type: ignore
        for i, row in enumerate(csv_reader):
            try:
                source = (
                    row[self.source_column]
                    if self.source_column is not None
                    else self.file_path
                )
            except KeyError:
                raise ValueError(
                    f"Source column '{self.source_column}' not found in CSV file."
                )
            content = "\n".join(
                f"{k.strip()}: {v.strip() if v is not None else v}"
                for k, v in row.items()
                if k not in self.metadata_columns
            )
            metadata = {"source": source, "row": i}
            for col in self.metadata_columns:
                try:
                    metadata[col] = row[col]
                except KeyError:
                    raise ValueError(f"Metadata column '{col}' not found in CSV file.")
            doc = Document(page_content=content, metadata=metadata)
            docs.append(doc)

        return docs


class UnstructuredCSVLoader(UnstructuredFileLoader):
    """Load `CSV` files using `Unstructured`.

    Like other
    Unstructured loaders, UnstructuredCSVLoader can be used in both
    "single" and "elements" mode. If you use the loader in "elements"
    mode, the CSV file will be a single Unstructured Table element.
    If you use the loader in "elements" mode, an HTML representation
    of the table will be available in the "text_as_html" key in the
    document metadata.

    Examples
    --------
    from langchain.document_loaders.csv_loader import UnstructuredCSVLoader

    loader = UnstructuredCSVLoader("stanley-cups.csv", mode="elements")
    docs = loader.load()
    """

    def __init__(
        self, file_path: str, mode: str = "single", **unstructured_kwargs: Any
    ):
        """

        Args:
            file_path: The path to the CSV file.
            mode: The mode to use when loading the CSV file.
              Optional. Defaults to "single".
            **unstructured_kwargs: Keyword arguments to pass to unstructured.
        """
        validate_unstructured_version(min_unstructured_version="0.6.8")
        super().__init__(file_path=file_path, mode=mode, **unstructured_kwargs)

    def _get_elements(self) -> List:
        from unstructured.partition.csv import partition_csv

        return partition_csv(filename=self.file_path, **self.unstructured_kwargs)