File size: 13,942 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
from __future__ import annotations

import logging
from typing import (
    Any,
    Callable,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Tuple,
    Type,
)

from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    FunctionMessage,
    FunctionMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
    SystemMessageChunk,
)
from langchain_core.outputs import (
    ChatGeneration,
    ChatGenerationChunk,
    ChatResult,
    GenerationChunk,
)
from langchain_core.pydantic_v1 import Field, root_validator
from requests.exceptions import HTTPError
from tenacity import (
    RetryCallState,
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.chat_models.base import (
    BaseChatModel,
    _generate_from_stream,
)
from langchain.utils import get_from_dict_or_env

logger = logging.getLogger(__name__)


def convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
    role = _dict["role"]
    if role == "user":
        return HumanMessage(content=_dict["content"])
    elif role == "assistant":
        content = _dict.get("content", "") or ""
        if _dict.get("function_call"):
            additional_kwargs = {"function_call": dict(_dict["function_call"])}
        else:
            additional_kwargs = {}
        return AIMessage(content=content, additional_kwargs=additional_kwargs)
    elif role == "system":
        return SystemMessage(content=_dict["content"])
    elif role == "function":
        return FunctionMessage(content=_dict["content"], name=_dict["name"])
    else:
        return ChatMessage(content=_dict["content"], role=role)


def convert_message_to_dict(message: BaseMessage) -> dict:
    message_dict: Dict[str, Any]
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
        if "function_call" in message.additional_kwargs:
            message_dict["function_call"] = message.additional_kwargs["function_call"]
            # If function call only, content is None not empty string
            if message_dict["content"] == "":
                message_dict["content"] = None
    elif isinstance(message, SystemMessage):
        message_dict = {"role": "system", "content": message.content}
    elif isinstance(message, FunctionMessage):
        message_dict = {
            "role": "function",
            "content": message.content,
            "name": message.name,
        }
    else:
        raise TypeError(f"Got unknown type {message}")
    if "name" in message.additional_kwargs:
        message_dict["name"] = message.additional_kwargs["name"]
    return message_dict


def _stream_response_to_generation_chunk(
    stream_response: Dict[str, Any],
    length: int,
) -> GenerationChunk:
    """Convert a stream response to a generation chunk.

    As the low level API implement is different from openai and other llm.
    Stream response of Tongyi is not split into chunks, but all data generated before.
    For example, the answer 'Hi Pickle Rick! How can I assist you today?'
    Other llm will stream answer:
    'Hi Pickle',
    ' Rick!',
    ' How can I assist you today?'.

    Tongyi answer:
    'Hi Pickle',
    'Hi Pickle Rick!',
    'Hi Pickle Rick! How can I assist you today?'.

    As the GenerationChunk is implemented with chunks. Only return full_text[length:]
    for new chunk.
    """
    full_text = stream_response["output"]["text"]
    text = full_text[length:]
    finish_reason = stream_response["output"].get("finish_reason", None)

    return GenerationChunk(
        text=text,
        generation_info=dict(
            finish_reason=finish_reason,
        ),
    )


def _create_retry_decorator(
    llm: ChatTongyi,
    run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> Callable[[Any], Any]:
    def _before_sleep(retry_state: RetryCallState) -> None:
        if run_manager:
            run_manager.on_retry(retry_state)
        return None

    min_seconds = 1
    max_seconds = 4
    # Wait 2^x * 1 second between each retry starting with
    # 4 seconds, then up to 10 seconds, then 10 seconds afterwards
    return retry(
        reraise=True,
        stop=stop_after_attempt(llm.max_retries),
        wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
        retry=(retry_if_exception_type(HTTPError)),
        before_sleep=_before_sleep,
    )


def _convert_delta_to_message_chunk(
    _dict: Mapping[str, Any],
    default_class: Type[BaseMessageChunk],
    length: int,
) -> BaseMessageChunk:
    role = _dict.get("role")
    full_content = _dict.get("content") or ""
    content = full_content[length:]
    if _dict.get("function_call"):
        additional_kwargs = {"function_call": dict(_dict["function_call"])}
    else:
        additional_kwargs = {}

    if role == "user" or default_class == HumanMessageChunk:
        return HumanMessageChunk(content=content)
    elif role == "assistant" or default_class == AIMessageChunk:
        return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
    elif role == "system" or default_class == SystemMessageChunk:
        return SystemMessageChunk(content=content)
    elif role == "function" or default_class == FunctionMessageChunk:
        return FunctionMessageChunk(content=content, name=_dict["name"])
    elif role or default_class == ChatMessageChunk:
        return ChatMessageChunk(content=content, role=role)
    else:
        return default_class(content=content)


class ChatTongyi(BaseChatModel):
    """Alibaba Tongyi Qwen chat models API.

    To use, you should have the ``dashscope`` python package installed,
    and set env ``DASHSCOPE_API_KEY`` with your API key, or pass
    it as a named parameter to the constructor.

    Example:
        .. code-block:: python

            from langchain.chat_models import Tongyi
            Tongyi_chat = ChatTongyi()
    """

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"dashscope_api_key": "DASHSCOPE_API_KEY"}

    @property
    def lc_serializable(self) -> bool:
        return True

    client: Any  #: :meta private:
    model_name: str = Field(default="qwen-turbo", alias="model")

    """Model name to use."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)

    top_p: float = 0.8
    """Total probability mass of tokens to consider at each step."""

    dashscope_api_key: Optional[str] = None
    """Dashscope api key provide by alicloud."""

    n: int = 1
    """How many completions to generate for each prompt."""

    streaming: bool = False
    """Whether to stream the results or not."""

    max_retries: int = 10
    """Maximum number of retries to make when generating."""

    prefix_messages: List = Field(default_factory=list)
    """Series of messages for Chat input."""

    result_format: str = Field(default="message")
    """Return result format"""

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "tongyi"

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        get_from_dict_or_env(values, "dashscope_api_key", "DASHSCOPE_API_KEY")
        try:
            import dashscope
        except ImportError:
            raise ImportError(
                "Could not import dashscope python package. "
                "Please install it with `pip install dashscope --upgrade`."
            )
        try:
            values["client"] = dashscope.Generation
        except AttributeError:
            raise ValueError(
                "`dashscope` has no `Generation` attribute, this is likely "
                "due to an old version of the dashscope package. Try upgrading it "
                "with `pip install --upgrade dashscope`."
            )

        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling OpenAI API."""
        return {
            "model": self.model_name,
            "top_p": self.top_p,
            "stream": self.streaming,
            "n": self.n,
            "result_format": self.result_format,
            **self.model_kwargs,
        }

    def completion_with_retry(
        self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
    ) -> Any:
        """Use tenacity to retry the completion call."""
        retry_decorator = _create_retry_decorator(self, run_manager=run_manager)

        @retry_decorator
        def _completion_with_retry(**_kwargs: Any) -> Any:
            resp = self.client.call(**_kwargs)
            if resp.status_code == 200:
                return resp
            elif resp.status_code in [400, 401]:
                raise ValueError(
                    f"status_code: {resp.status_code} \n "
                    f"code: {resp.code} \n message: {resp.message}"
                )
            else:
                raise HTTPError(
                    f"HTTP error occurred: status_code: {resp.status_code} \n "
                    f"code: {resp.code} \n message: {resp.message}",
                    response=resp,
                )

        return _completion_with_retry(**kwargs)

    def stream_completion_with_retry(
        self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
    ) -> Any:
        """Use tenacity to retry the completion call."""
        retry_decorator = _create_retry_decorator(self, run_manager=run_manager)

        @retry_decorator
        def _stream_completion_with_retry(**_kwargs: Any) -> Any:
            return self.client.call(**_kwargs)

        return _stream_completion_with_retry(**kwargs)

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> ChatResult:
        should_stream = stream if stream is not None else self.streaming
        if should_stream:
            stream_iter = self._stream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return _generate_from_stream(stream_iter)

        if not messages:
            raise ValueError("No messages provided.")

        message_dicts, params = self._create_message_dicts(messages, stop)

        if message_dicts[-1]["role"] != "user":
            raise ValueError("Last message should be user message.")

        params = {**params, **kwargs}
        response = self.completion_with_retry(
            messages=message_dicts, run_manager=run_manager, **params
        )
        return self._create_chat_result(response)

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {**params, **kwargs, "stream": True}
        # Mark current chunk total length
        length = 0
        default_chunk_class = AIMessageChunk
        for chunk in self.stream_completion_with_retry(
            messages=message_dicts, run_manager=run_manager, **params
        ):
            if len(chunk["output"]["choices"]) == 0:
                continue
            choice = chunk["output"]["choices"][0]

            chunk = _convert_delta_to_message_chunk(
                choice["message"], default_chunk_class, length
            )
            finish_reason = choice.get("finish_reason")
            generation_info = (
                dict(finish_reason=finish_reason) if finish_reason is not None else None
            )
            default_chunk_class = chunk.__class__
            chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
            yield chunk
            if run_manager:
                run_manager.on_llm_new_token(chunk.text, chunk=chunk)
            length = len(choice["message"]["content"])

    def _create_message_dicts(
        self, messages: List[BaseMessage], stop: Optional[List[str]]
    ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
        params = self._client_params()

        # Ensure `stop` is a list of strings
        if stop is not None:
            if "stop" in params:
                raise ValueError("`stop` found in both the input and default params.")
            params["stop"] = stop

        message_dicts = [convert_message_to_dict(m) for m in messages]
        return message_dicts, params

    def _client_params(self) -> Dict[str, Any]:
        """Get the parameters used for the openai client."""
        creds: Dict[str, Any] = {
            "api_key": self.dashscope_api_key,
        }
        return {**self._default_params, **creds}

    def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
        generations = []
        for res in response["output"]["choices"]:
            message = convert_dict_to_message(res["message"])
            gen = ChatGeneration(
                message=message,
                generation_info=dict(finish_reason=res.get("finish_reason")),
            )
            generations.append(gen)
        token_usage = response.get("usage", {})
        llm_output = {"token_usage": token_usage, "model_name": self.model_name}
        return ChatResult(generations=generations, llm_output=llm_output)