File size: 5,164 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""PromptLayer wrapper."""
import datetime
from typing import Any, Dict, List, Optional

from langchain_core.messages import BaseMessage
from langchain_core.outputs import ChatResult

from langchain.callbacks.manager import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain.chat_models import ChatOpenAI


class PromptLayerChatOpenAI(ChatOpenAI):
    """`PromptLayer` and `OpenAI` Chat large language models API.

    To use, you should have the ``openai`` and ``promptlayer`` python
    package installed, and the environment variable ``OPENAI_API_KEY``
    and ``PROMPTLAYER_API_KEY`` set with your openAI API key and
    promptlayer key respectively.

    All parameters that can be passed to the OpenAI LLM can also
    be passed here. The PromptLayerChatOpenAI adds to optional

    parameters:
        ``pl_tags``: List of strings to tag the request with.
        ``return_pl_id``: If True, the PromptLayer request ID will be
            returned in the ``generation_info`` field of the
            ``Generation`` object.

    Example:
        .. code-block:: python

            from langchain.chat_models import PromptLayerChatOpenAI
            openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo")
    """

    pl_tags: Optional[List[str]]
    return_pl_id: Optional[bool] = False

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> ChatResult:
        """Call ChatOpenAI generate and then call PromptLayer API to log the request."""
        from promptlayer.utils import get_api_key, promptlayer_api_request

        request_start_time = datetime.datetime.now().timestamp()
        generated_responses = super()._generate(
            messages, stop, run_manager, stream=stream, **kwargs
        )
        request_end_time = datetime.datetime.now().timestamp()
        message_dicts, params = super()._create_message_dicts(messages, stop)
        for i, generation in enumerate(generated_responses.generations):
            response_dict, params = super()._create_message_dicts(
                [generation.message], stop
            )
            params = {**params, **kwargs}
            pl_request_id = promptlayer_api_request(
                "langchain.PromptLayerChatOpenAI",
                "langchain",
                message_dicts,
                params,
                self.pl_tags,
                response_dict,
                request_start_time,
                request_end_time,
                get_api_key(),
                return_pl_id=self.return_pl_id,
            )
            if self.return_pl_id:
                if generation.generation_info is None or not isinstance(
                    generation.generation_info, dict
                ):
                    generation.generation_info = {}
                generation.generation_info["pl_request_id"] = pl_request_id
        return generated_responses

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        stream: Optional[bool] = None,
        **kwargs: Any,
    ) -> ChatResult:
        """Call ChatOpenAI agenerate and then call PromptLayer to log."""
        from promptlayer.utils import get_api_key, promptlayer_api_request_async

        request_start_time = datetime.datetime.now().timestamp()
        generated_responses = await super()._agenerate(
            messages, stop, run_manager, stream=stream, **kwargs
        )
        request_end_time = datetime.datetime.now().timestamp()
        message_dicts, params = super()._create_message_dicts(messages, stop)
        for i, generation in enumerate(generated_responses.generations):
            response_dict, params = super()._create_message_dicts(
                [generation.message], stop
            )
            params = {**params, **kwargs}
            pl_request_id = await promptlayer_api_request_async(
                "langchain.PromptLayerChatOpenAI.async",
                "langchain",
                message_dicts,
                params,
                self.pl_tags,
                response_dict,
                request_start_time,
                request_end_time,
                get_api_key(),
                return_pl_id=self.return_pl_id,
            )
            if self.return_pl_id:
                if generation.generation_info is None or not isinstance(
                    generation.generation_info, dict
                ):
                    generation.generation_info = {}
                generation.generation_info["pl_request_id"] = pl_request_id
        return generated_responses

    @property
    def _llm_type(self) -> str:
        return "promptlayer-openai-chat"

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        return {
            **super()._identifying_params,
            "pl_tags": self.pl_tags,
            "return_pl_id": self.return_pl_id,
        }