File size: 7,632 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import logging
from typing import Any, Dict, List, Mapping, Optional, cast

from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    ChatMessage,
    FunctionMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import (
    ChatGeneration,
    ChatResult,
)
from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr

from langchain.callbacks.manager import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel

logger = logging.getLogger(__name__)


# Ignoring type because below is valid pydantic code
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"  [call-arg]
class ChatParams(BaseModel, extra=Extra.allow):  # type: ignore[call-arg]
    """Parameters for the `Javelin AI Gateway` LLM."""

    temperature: float = 0.0
    stop: Optional[List[str]] = None
    max_tokens: Optional[int] = None


class ChatJavelinAIGateway(BaseChatModel):
    """`Javelin AI Gateway` chat models API.

    To use, you should have the ``javelin_sdk`` python package installed.
    For more information, see https://docs.getjavelin.io

    Example:
        .. code-block:: python

            from langchain.chat_models import ChatJavelinAIGateway

            chat = ChatJavelinAIGateway(
                gateway_uri="<javelin-ai-gateway-uri>",
                route="<javelin-ai-gateway-chat-route>",
                params={
                    "temperature": 0.1
                }
            )
    """

    route: str
    """The route to use for the Javelin AI Gateway API."""

    gateway_uri: Optional[str] = None
    """The URI for the Javelin AI Gateway API."""

    params: Optional[ChatParams] = None
    """Parameters for the Javelin AI Gateway LLM."""

    client: Any
    """javelin client."""

    javelin_api_key: Optional[SecretStr] = None
    """The API key for the Javelin AI Gateway."""

    def __init__(self, **kwargs: Any):
        try:
            from javelin_sdk import (
                JavelinClient,
                UnauthorizedError,
            )
        except ImportError:
            raise ImportError(
                "Could not import javelin_sdk python package. "
                "Please install it with `pip install javelin_sdk`."
            )

        super().__init__(**kwargs)
        if self.gateway_uri:
            try:
                self.client = JavelinClient(
                    base_url=self.gateway_uri,
                    api_key=cast(SecretStr, self.javelin_api_key).get_secret_value(),
                )
            except UnauthorizedError as e:
                raise ValueError("Javelin: Incorrect API Key.") from e

    @property
    def _default_params(self) -> Dict[str, Any]:
        params: Dict[str, Any] = {
            "gateway_uri": self.gateway_uri,
            "javelin_api_key": cast(SecretStr, self.javelin_api_key).get_secret_value(),
            "route": self.route,
            **(self.params.dict() if self.params else {}),
        }
        return params

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        message_dicts = [
            ChatJavelinAIGateway._convert_message_to_dict(message)
            for message in messages
        ]
        data: Dict[str, Any] = {
            "messages": message_dicts,
            **(self.params.dict() if self.params else {}),
        }

        resp = self.client.query_route(self.route, query_body=data)

        return ChatJavelinAIGateway._create_chat_result(resp.dict())

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        message_dicts = [
            ChatJavelinAIGateway._convert_message_to_dict(message)
            for message in messages
        ]
        data: Dict[str, Any] = {
            "messages": message_dicts,
            **(self.params.dict() if self.params else {}),
        }

        resp = await self.client.aquery_route(self.route, query_body=data)

        return ChatJavelinAIGateway._create_chat_result(resp.dict())

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        return self._default_params

    def _get_invocation_params(
        self, stop: Optional[List[str]] = None, **kwargs: Any
    ) -> Dict[str, Any]:
        """Get the parameters used to invoke the model FOR THE CALLBACKS."""
        return {
            **self._default_params,
            **super()._get_invocation_params(stop=stop, **kwargs),
        }

    @property
    def _llm_type(self) -> str:
        """Return type of chat model."""
        return "javelin-ai-gateway-chat"

    @staticmethod
    def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
        role = _dict["role"]
        content = _dict["content"]
        if role == "user":
            return HumanMessage(content=content)
        elif role == "assistant":
            return AIMessage(content=content)
        elif role == "system":
            return SystemMessage(content=content)
        else:
            return ChatMessage(content=content, role=role)

    @staticmethod
    def _raise_functions_not_supported() -> None:
        raise ValueError(
            "Function messages are not supported by the Javelin AI Gateway. Please"
            " create a feature request at https://docs.getjavelin.io"
        )

    @staticmethod
    def _convert_message_to_dict(message: BaseMessage) -> dict:
        if isinstance(message, ChatMessage):
            message_dict = {"role": message.role, "content": message.content}
        elif isinstance(message, HumanMessage):
            message_dict = {"role": "user", "content": message.content}
        elif isinstance(message, AIMessage):
            message_dict = {"role": "assistant", "content": message.content}
        elif isinstance(message, SystemMessage):
            message_dict = {"role": "system", "content": message.content}
        elif isinstance(message, FunctionMessage):
            raise ValueError(
                "Function messages are not supported by the Javelin AI Gateway. Please"
                " create a feature request at https://docs.getjavelin.io"
            )
        else:
            raise ValueError(f"Got unknown message type: {message}")

        if "function_call" in message.additional_kwargs:
            ChatJavelinAIGateway._raise_functions_not_supported()
        if message.additional_kwargs:
            logger.warning(
                "Additional message arguments are unsupported by Javelin AI Gateway "
                " and will be ignored: %s",
                message.additional_kwargs,
            )
        return message_dict

    @staticmethod
    def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
        generations = []
        for candidate in response["llm_response"]["choices"]:
            message = ChatJavelinAIGateway._convert_dict_to_message(
                candidate["message"]
            )
            message_metadata = candidate.get("metadata", {})
            gen = ChatGeneration(
                message=message,
                generation_info=dict(message_metadata),
            )
            generations.append(gen)

        response_metadata = response.get("metadata", {})
        return ChatResult(generations=generations, llm_output=response_metadata)