File size: 11,206 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Optional,
    Type,
    Union,
)

from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    FunctionMessage,
    FunctionMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    SystemMessage,
    SystemMessageChunk,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str

from langchain.adapters.openai import convert_message_to_dict
from langchain.callbacks.manager import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain.chat_models.base import BaseChatModel
from langchain.llms.base import create_base_retry_decorator
from langchain.utils.env import get_from_dict_or_env


def _convert_delta_to_message_chunk(
    _dict: Any, default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
    """Convert a delta response to a message chunk."""
    role = _dict.role
    content = _dict.content or ""
    additional_kwargs: Dict = {}

    if role == "user" or default_class == HumanMessageChunk:
        return HumanMessageChunk(content=content)
    elif role == "assistant" or default_class == AIMessageChunk:
        return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
    elif role == "system" or default_class == SystemMessageChunk:
        return SystemMessageChunk(content=content)
    elif role == "function" or default_class == FunctionMessageChunk:
        return FunctionMessageChunk(content=content, name=_dict.name)
    elif role or default_class == ChatMessageChunk:
        return ChatMessageChunk(content=content, role=role)
    else:
        return default_class(content=content)


def convert_dict_to_message(_dict: Any) -> BaseMessage:
    """Convert a dict response to a message."""
    role = _dict.role
    content = _dict.content or ""
    if role == "user":
        return HumanMessage(content=content)
    elif role == "assistant":
        content = _dict.content
        additional_kwargs: Dict = {}
        return AIMessage(content=content, additional_kwargs=additional_kwargs)
    elif role == "system":
        return SystemMessage(content=content)
    elif role == "function":
        return FunctionMessage(content=content, name=_dict.name)
    else:
        return ChatMessage(content=content, role=role)


class ChatFireworks(BaseChatModel):
    """Fireworks Chat models."""

    model: str = "accounts/fireworks/models/llama-v2-7b-chat"
    model_kwargs: dict = Field(
        default_factory=lambda: {
            "temperature": 0.7,
            "max_tokens": 512,
            "top_p": 1,
        }.copy()
    )
    fireworks_api_key: Optional[SecretStr] = None
    max_retries: int = 20
    use_retry: bool = True

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"fireworks_api_key": "FIREWORKS_API_KEY"}

    @classmethod
    def is_lc_serializable(cls) -> bool:
        return True

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key in environment."""
        try:
            import fireworks.client
        except ImportError as e:
            raise ImportError(
                "Could not import fireworks-ai python package. "
                "Please install it with `pip install fireworks-ai`."
            ) from e
        fireworks_api_key = convert_to_secret_str(
            get_from_dict_or_env(values, "fireworks_api_key", "FIREWORKS_API_KEY")
        )
        fireworks.client.api_key = fireworks_api_key.get_secret_value()
        return values

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "fireworks-chat"

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        message_dicts = self._create_message_dicts(messages)

        params = {
            "model": self.model,
            "messages": message_dicts,
            **self.model_kwargs,
        }
        response = completion_with_retry(
            self,
            self.use_retry,
            run_manager=run_manager,
            stop=stop,
            **params,
        )
        return self._create_chat_result(response)

    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        message_dicts = self._create_message_dicts(messages)
        params = {
            "model": self.model,
            "messages": message_dicts,
            **self.model_kwargs,
        }
        response = await acompletion_with_retry(
            self, self.use_retry, run_manager=run_manager, stop=stop, **params
        )
        return self._create_chat_result(response)

    def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
        if llm_outputs[0] is None:
            return {}
        return llm_outputs[0]

    def _create_chat_result(self, response: Any) -> ChatResult:
        generations = []
        for res in response.choices:
            message = convert_dict_to_message(res.message)
            gen = ChatGeneration(
                message=message,
                generation_info=dict(finish_reason=res.finish_reason),
            )
            generations.append(gen)
        llm_output = {"model": self.model}
        return ChatResult(generations=generations, llm_output=llm_output)

    def _create_message_dicts(
        self, messages: List[BaseMessage]
    ) -> List[Dict[str, Any]]:
        message_dicts = [convert_message_to_dict(m) for m in messages]
        return message_dicts

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        message_dicts = self._create_message_dicts(messages)
        default_chunk_class = AIMessageChunk
        params = {
            "model": self.model,
            "messages": message_dicts,
            "stream": True,
            **self.model_kwargs,
        }
        for chunk in completion_with_retry(
            self, self.use_retry, run_manager=run_manager, stop=stop, **params
        ):
            choice = chunk.choices[0]
            chunk = _convert_delta_to_message_chunk(choice.delta, default_chunk_class)
            finish_reason = choice.finish_reason
            generation_info = (
                dict(finish_reason=finish_reason) if finish_reason is not None else None
            )
            default_chunk_class = chunk.__class__
            chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
            yield chunk
            if run_manager:
                run_manager.on_llm_new_token(chunk.text, chunk=chunk)

    async def _astream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[ChatGenerationChunk]:
        message_dicts = self._create_message_dicts(messages)
        default_chunk_class = AIMessageChunk
        params = {
            "model": self.model,
            "messages": message_dicts,
            "stream": True,
            **self.model_kwargs,
        }
        async for chunk in await acompletion_with_retry_streaming(
            self, self.use_retry, run_manager=run_manager, stop=stop, **params
        ):
            choice = chunk.choices[0]
            chunk = _convert_delta_to_message_chunk(choice.delta, default_chunk_class)
            finish_reason = choice.finish_reason
            generation_info = (
                dict(finish_reason=finish_reason) if finish_reason is not None else None
            )
            default_chunk_class = chunk.__class__
            chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
            yield chunk
            if run_manager:
                await run_manager.on_llm_new_token(token=chunk.text, chunk=chunk)


def conditional_decorator(
    condition: bool, decorator: Callable[[Any], Any]
) -> Callable[[Any], Any]:
    def actual_decorator(func: Callable[[Any], Any]) -> Callable[[Any], Any]:
        if condition:
            return decorator(func)
        return func

    return actual_decorator


def completion_with_retry(
    llm: ChatFireworks,
    use_retry: bool,
    *,
    run_manager: Optional[CallbackManagerForLLMRun] = None,
    **kwargs: Any,
) -> Any:
    """Use tenacity to retry the completion call."""
    import fireworks.client

    retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)

    @conditional_decorator(use_retry, retry_decorator)
    def _completion_with_retry(**kwargs: Any) -> Any:
        return fireworks.client.ChatCompletion.create(
            **kwargs,
        )

    return _completion_with_retry(**kwargs)


async def acompletion_with_retry(
    llm: ChatFireworks,
    use_retry: bool,
    *,
    run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
    **kwargs: Any,
) -> Any:
    """Use tenacity to retry the async completion call."""
    import fireworks.client

    retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)

    @conditional_decorator(use_retry, retry_decorator)
    async def _completion_with_retry(**kwargs: Any) -> Any:
        return await fireworks.client.ChatCompletion.acreate(
            **kwargs,
        )

    return await _completion_with_retry(**kwargs)


async def acompletion_with_retry_streaming(
    llm: ChatFireworks,
    use_retry: bool,
    *,
    run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
    **kwargs: Any,
) -> Any:
    """Use tenacity to retry the completion call for streaming."""
    import fireworks.client

    retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)

    @conditional_decorator(use_retry, retry_decorator)
    async def _completion_with_retry(**kwargs: Any) -> Any:
        return fireworks.client.ChatCompletion.acreate(
            **kwargs,
        )

    return await _completion_with_retry(**kwargs)


def _create_retry_decorator(
    llm: ChatFireworks,
    run_manager: Optional[
        Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
    ] = None,
) -> Callable[[Any], Any]:
    """Define retry mechanism."""
    import fireworks.client

    errors = [
        fireworks.client.error.RateLimitError,
        fireworks.client.error.InternalServerError,
        fireworks.client.error.BadGatewayError,
        fireworks.client.error.ServiceUnavailableError,
    ]
    return create_base_retry_decorator(
        error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
    )