File size: 6,867 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import json
import logging
import threading
from typing import Any, Dict, List, Mapping, Optional

import requests
from langchain_core.messages import (
    AIMessage,
    BaseMessage,
    ChatMessage,
    HumanMessage,
)
from langchain_core.outputs import ChatGeneration, ChatResult
from langchain_core.pydantic_v1 import root_validator

from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.chat_models.base import BaseChatModel
from langchain.utils import get_from_dict_or_env

logger = logging.getLogger(__name__)


def _convert_message_to_dict(message: BaseMessage) -> dict:
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
    else:
        raise ValueError(f"Got unknown type {message}")
    return message_dict


class ErnieBotChat(BaseChatModel):
    """`ERNIE-Bot` large language model.

    ERNIE-Bot is a large language model developed by Baidu,
    covering a huge amount of Chinese data.

    To use, you should have the `ernie_client_id` and `ernie_client_secret` set,
    or set the environment variable `ERNIE_CLIENT_ID` and `ERNIE_CLIENT_SECRET`.

    Note:
    access_token will be automatically generated based on client_id and client_secret,
    and will be regenerated after expiration (30 days).

    Default model is `ERNIE-Bot-turbo`,
    currently supported models are `ERNIE-Bot-turbo`, `ERNIE-Bot`

    Example:
        .. code-block:: python

            from langchain.chat_models import ErnieBotChat
            chat = ErnieBotChat(model_name='ERNIE-Bot')

    """

    ernie_api_base: Optional[str] = None
    """Baidu application custom endpoints"""

    ernie_client_id: Optional[str] = None
    """Baidu application client id"""

    ernie_client_secret: Optional[str] = None
    """Baidu application client secret"""

    access_token: Optional[str] = None
    """access token is generated by client id and client secret, 
    setting this value directly will cause an error"""

    model_name: str = "ERNIE-Bot-turbo"
    """model name of ernie, default is `ERNIE-Bot-turbo`.
      Currently supported `ERNIE-Bot-turbo`, `ERNIE-Bot`"""

    request_timeout: Optional[int] = 60
    """request timeout for chat http requests"""

    streaming: Optional[bool] = False
    """streaming mode. not supported yet."""

    top_p: Optional[float] = 0.8
    temperature: Optional[float] = 0.95
    penalty_score: Optional[float] = 1

    _lock = threading.Lock()

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        values["ernie_api_base"] = get_from_dict_or_env(
            values, "ernie_api_base", "ERNIE_API_BASE", "https://aip.baidubce.com"
        )
        values["ernie_client_id"] = get_from_dict_or_env(
            values,
            "ernie_client_id",
            "ERNIE_CLIENT_ID",
        )
        values["ernie_client_secret"] = get_from_dict_or_env(
            values,
            "ernie_client_secret",
            "ERNIE_CLIENT_SECRET",
        )
        return values

    def _chat(self, payload: object) -> dict:
        base_url = f"{self.ernie_api_base}/rpc/2.0/ai_custom/v1/wenxinworkshop/chat"
        model_paths = {
            "ERNIE-Bot-turbo": "eb-instant",
            "ERNIE-Bot": "completions",
            "ERNIE-Bot-4": "completions_pro",
            "BLOOMZ-7B": "bloomz_7b1",
            "Llama-2-7b-chat": "llama_2_7b",
            "Llama-2-13b-chat": "llama_2_13b",
            "Llama-2-70b-chat": "llama_2_70b",
        }
        if self.model_name in model_paths:
            url = f"{base_url}/{model_paths[self.model_name]}"
        else:
            raise ValueError(f"Got unknown model_name {self.model_name}")

        resp = requests.post(
            url,
            timeout=self.request_timeout,
            headers={
                "Content-Type": "application/json",
            },
            params={"access_token": self.access_token},
            json=payload,
        )
        return resp.json()

    def _refresh_access_token_with_lock(self) -> None:
        with self._lock:
            logger.debug("Refreshing access token")
            base_url: str = f"{self.ernie_api_base}/oauth/2.0/token"
            resp = requests.post(
                base_url,
                timeout=10,
                headers={
                    "Content-Type": "application/json",
                    "Accept": "application/json",
                },
                params={
                    "grant_type": "client_credentials",
                    "client_id": self.ernie_client_id,
                    "client_secret": self.ernie_client_secret,
                },
            )
            self.access_token = str(resp.json().get("access_token"))

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if self.streaming:
            raise ValueError("`streaming` option currently unsupported.")

        if not self.access_token:
            self._refresh_access_token_with_lock()
        payload = {
            "messages": [_convert_message_to_dict(m) for m in messages],
            "top_p": self.top_p,
            "temperature": self.temperature,
            "penalty_score": self.penalty_score,
            **kwargs,
        }
        logger.debug(f"Payload for ernie api is {payload}")
        resp = self._chat(payload)
        if resp.get("error_code"):
            if resp.get("error_code") == 111:
                logger.debug("access_token expired, refresh it")
                self._refresh_access_token_with_lock()
                resp = self._chat(payload)
            else:
                raise ValueError(f"Error from ErnieChat api response: {resp}")
        return self._create_chat_result(resp)

    def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
        if "function_call" in response:
            fc_str = '{{"function_call": {}}}'.format(
                json.dumps(response.get("function_call"))
            )
            generations = [ChatGeneration(message=AIMessage(content=fc_str))]
        else:
            generations = [
                ChatGeneration(message=AIMessage(content=response.get("result")))
            ]
        token_usage = response.get("usage", {})
        llm_output = {"token_usage": token_usage, "model_name": self.model_name}
        return ChatResult(generations=generations, llm_output=llm_output)

    @property
    def _llm_type(self) -> str:
        return "ernie-bot-chat"