File size: 10,941 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
"""Azure OpenAI chat wrapper."""
from __future__ import annotations

import logging
import os
import warnings
from typing import Any, Dict, Union

from langchain_core.outputs import ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator

from langchain.chat_models.openai import ChatOpenAI
from langchain.utils import get_from_dict_or_env
from langchain.utils.openai import is_openai_v1

logger = logging.getLogger(__name__)


class AzureChatOpenAI(ChatOpenAI):
    """`Azure OpenAI` Chat Completion API.

    To use this class you
    must have a deployed model on Azure OpenAI. Use `deployment_name` in the
    constructor to refer to the "Model deployment name" in the Azure portal.

    In addition, you should have the ``openai`` python package installed, and the
    following environment variables set or passed in constructor in lower case:
    - ``AZURE_OPENAI_API_KEY``
    - ``AZURE_OPENAI_API_ENDPOINT``
    - ``AZURE_OPENAI_AD_TOKEN``
    - ``OPENAI_API_VERSION``
    - ``OPENAI_PROXY``

    For example, if you have `gpt-35-turbo` deployed, with the deployment name
    `35-turbo-dev`, the constructor should look like:

    .. code-block:: python

        AzureChatOpenAI(
            azure_deployment="35-turbo-dev",
            openai_api_version="2023-05-15",
        )

    Be aware the API version may change.

    You can also specify the version of the model using ``model_version`` constructor
    parameter, as Azure OpenAI doesn't return model version with the response.

    Default is empty. When you specify the version, it will be appended to the
    model name in the response. Setting correct version will help you to calculate the
    cost properly. Model version is not validated, so make sure you set it correctly
    to get the correct cost.

    Any parameters that are valid to be passed to the openai.create call can be passed
    in, even if not explicitly saved on this class.
    """

    azure_endpoint: Union[str, None] = None
    """Your Azure endpoint, including the resource.
    
        Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
    
        Example: `https://example-resource.azure.openai.com/`
    """
    deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment")
    """A model deployment. 
    
        If given sets the base client URL to include `/deployments/{azure_deployment}`.
        Note: this means you won't be able to use non-deployment endpoints.
    """
    openai_api_version: str = Field(default="", alias="api_version")
    """Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
    openai_api_key: Union[str, None] = Field(default=None, alias="api_key")
    """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
    azure_ad_token: Union[str, None] = None
    """Your Azure Active Directory token.
    
        Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
        
        For more: 
        https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
    """  # noqa: E501
    azure_ad_token_provider: Union[str, None] = None
    """A function that returns an Azure Active Directory token.
        
        Will be invoked on every request.
    """
    model_version: str = ""
    """Legacy, for openai<1.0.0 support."""
    openai_api_type: str = ""
    """Legacy, for openai<1.0.0 support."""
    validate_base_url: bool = True
    """For backwards compatibility. If legacy val openai_api_base is passed in, try to 
        infer if it is a base_url or azure_endpoint and update accordingly.
    """

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        if values["n"] < 1:
            raise ValueError("n must be at least 1.")
        if values["n"] > 1 and values["streaming"]:
            raise ValueError("n must be 1 when streaming.")

        # Check OPENAI_KEY for backwards compatibility.
        # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
        # other forms of azure credentials.
        values["openai_api_key"] = (
            values["openai_api_key"]
            or os.getenv("AZURE_OPENAI_API_KEY")
            or os.getenv("OPENAI_API_KEY")
        )
        values["openai_api_base"] = values["openai_api_base"] or os.getenv(
            "OPENAI_API_BASE"
        )
        values["openai_api_version"] = values["openai_api_version"] or os.getenv(
            "OPENAI_API_VERSION"
        )
        # Check OPENAI_ORGANIZATION for backwards compatibility.
        values["openai_organization"] = (
            values["openai_organization"]
            or os.getenv("OPENAI_ORG_ID")
            or os.getenv("OPENAI_ORGANIZATION")
        )
        values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
            "AZURE_OPENAI_ENDPOINT"
        )
        values["azure_ad_token"] = values["azure_ad_token"] or os.getenv(
            "AZURE_OPENAI_AD_TOKEN"
        )

        values["openai_api_type"] = get_from_dict_or_env(
            values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
        )
        values["openai_proxy"] = get_from_dict_or_env(
            values, "openai_proxy", "OPENAI_PROXY", default=""
        )

        try:
            import openai

        except ImportError:
            raise ImportError(
                "Could not import openai python package. "
                "Please install it with `pip install openai`."
            )
        if is_openai_v1():
            # For backwards compatibility. Before openai v1, no distinction was made
            # between azure_endpoint and base_url (openai_api_base).
            openai_api_base = values["openai_api_base"]
            if openai_api_base and values["validate_base_url"]:
                if "/openai" not in openai_api_base:
                    values["openai_api_base"] = (
                        values["openai_api_base"].rstrip("/") + "/openai"
                    )
                    warnings.warn(
                        "As of openai>=1.0.0, Azure endpoints should be specified via "
                        f"the `azure_endpoint` param not `openai_api_base` "
                        f"(or alias `base_url`). Updating `openai_api_base` from "
                        f"{openai_api_base} to {values['openai_api_base']}."
                    )
                if values["deployment_name"]:
                    warnings.warn(
                        "As of openai>=1.0.0, if `deployment_name` (or alias "
                        "`azure_deployment`) is specified then "
                        "`openai_api_base` (or alias `base_url`) should not be. "
                        "Instead use `deployment_name` (or alias `azure_deployment`) "
                        "and `azure_endpoint`."
                    )
                    if values["deployment_name"] not in values["openai_api_base"]:
                        warnings.warn(
                            "As of openai>=1.0.0, if `openai_api_base` "
                            "(or alias `base_url`) is specified it is expected to be "
                            "of the form "
                            "https://example-resource.azure.openai.com/openai/deployments/example-deployment. "  # noqa: E501
                            f"Updating {openai_api_base} to "
                            f"{values['openai_api_base']}."
                        )
                        values["openai_api_base"] += (
                            "/deployments/" + values["deployment_name"]
                        )
                    values["deployment_name"] = None
            client_params = {
                "api_version": values["openai_api_version"],
                "azure_endpoint": values["azure_endpoint"],
                "azure_deployment": values["deployment_name"],
                "api_key": values["openai_api_key"],
                "azure_ad_token": values["azure_ad_token"],
                "azure_ad_token_provider": values["azure_ad_token_provider"],
                "organization": values["openai_organization"],
                "base_url": values["openai_api_base"],
                "timeout": values["request_timeout"],
                "max_retries": values["max_retries"],
                "default_headers": values["default_headers"],
                "default_query": values["default_query"],
                "http_client": values["http_client"],
            }
            values["client"] = openai.AzureOpenAI(**client_params).chat.completions
            values["async_client"] = openai.AsyncAzureOpenAI(
                **client_params
            ).chat.completions
        else:
            values["client"] = openai.ChatCompletion
        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling OpenAI API."""
        if is_openai_v1():
            return super()._default_params
        else:
            return {
                **super()._default_params,
                "engine": self.deployment_name,
            }

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Get the identifying parameters."""
        return {**self._default_params}

    @property
    def _client_params(self) -> Dict[str, Any]:
        """Get the config params used for the openai client."""
        if is_openai_v1():
            return super()._client_params
        else:
            return {
                **super()._client_params,
                "api_type": self.openai_api_type,
                "api_version": self.openai_api_version,
            }

    @property
    def _llm_type(self) -> str:
        return "azure-openai-chat"

    @property
    def lc_attributes(self) -> Dict[str, Any]:
        return {
            "openai_api_type": self.openai_api_type,
            "openai_api_version": self.openai_api_version,
        }

    def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
        if not isinstance(response, dict):
            response = response.dict()
        for res in response["choices"]:
            if res.get("finish_reason", None) == "content_filter":
                raise ValueError(
                    "Azure has not provided the response due to a content filter "
                    "being triggered"
                )
        chat_result = super()._create_chat_result(response)

        if "model" in response:
            model = response["model"]
            if self.model_version:
                model = f"{model}-{self.model_version}"

            if chat_result.llm_output is not None and isinstance(
                chat_result.llm_output, dict
            ):
                chat_result.llm_output["model_name"] = model

        return chat_result