Spaces:
Runtime error
Runtime error
File size: 5,701 Bytes
129cd69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
"""Load summarizing chains."""
from typing import Any, Mapping, Optional, Protocol
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate
from langchain.callbacks.manager import Callbacks
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.reduce import ReduceDocumentsChain
from langchain.chains.combine_documents.refine import RefineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.summarize import map_reduce_prompt, refine_prompts, stuff_prompt
class LoadingCallable(Protocol):
"""Interface for loading the combine documents chain."""
def __call__(
self, llm: BaseLanguageModel, **kwargs: Any
) -> BaseCombineDocumentsChain:
"""Callable to load the combine documents chain."""
def _load_stuff_chain(
llm: BaseLanguageModel,
prompt: BasePromptTemplate = stuff_prompt.PROMPT,
document_variable_name: str = "text",
verbose: Optional[bool] = None,
**kwargs: Any,
) -> StuffDocumentsChain:
llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=verbose)
# TODO: document prompt
return StuffDocumentsChain(
llm_chain=llm_chain,
document_variable_name=document_variable_name,
verbose=verbose,
**kwargs,
)
def _load_map_reduce_chain(
llm: BaseLanguageModel,
map_prompt: BasePromptTemplate = map_reduce_prompt.PROMPT,
combine_prompt: BasePromptTemplate = map_reduce_prompt.PROMPT,
combine_document_variable_name: str = "text",
map_reduce_document_variable_name: str = "text",
collapse_prompt: Optional[BasePromptTemplate] = None,
reduce_llm: Optional[BaseLanguageModel] = None,
collapse_llm: Optional[BaseLanguageModel] = None,
verbose: Optional[bool] = None,
token_max: int = 3000,
callbacks: Callbacks = None,
**kwargs: Any,
) -> MapReduceDocumentsChain:
map_chain = LLMChain(
llm=llm, prompt=map_prompt, verbose=verbose, callbacks=callbacks
)
_reduce_llm = reduce_llm or llm
reduce_chain = LLMChain(
llm=_reduce_llm, prompt=combine_prompt, verbose=verbose, callbacks=callbacks
)
# TODO: document prompt
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain,
document_variable_name=combine_document_variable_name,
verbose=verbose,
callbacks=callbacks,
)
if collapse_prompt is None:
collapse_chain = None
if collapse_llm is not None:
raise ValueError(
"collapse_llm provided, but collapse_prompt was not: please "
"provide one or stop providing collapse_llm."
)
else:
_collapse_llm = collapse_llm or llm
collapse_chain = StuffDocumentsChain(
llm_chain=LLMChain(
llm=_collapse_llm,
prompt=collapse_prompt,
verbose=verbose,
callbacks=callbacks,
),
document_variable_name=combine_document_variable_name,
)
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=collapse_chain,
token_max=token_max,
verbose=verbose,
callbacks=callbacks,
)
return MapReduceDocumentsChain(
llm_chain=map_chain,
reduce_documents_chain=reduce_documents_chain,
document_variable_name=map_reduce_document_variable_name,
verbose=verbose,
callbacks=callbacks,
**kwargs,
)
def _load_refine_chain(
llm: BaseLanguageModel,
question_prompt: BasePromptTemplate = refine_prompts.PROMPT,
refine_prompt: BasePromptTemplate = refine_prompts.REFINE_PROMPT,
document_variable_name: str = "text",
initial_response_name: str = "existing_answer",
refine_llm: Optional[BaseLanguageModel] = None,
verbose: Optional[bool] = None,
**kwargs: Any,
) -> RefineDocumentsChain:
initial_chain = LLMChain(llm=llm, prompt=question_prompt, verbose=verbose)
_refine_llm = refine_llm or llm
refine_chain = LLMChain(llm=_refine_llm, prompt=refine_prompt, verbose=verbose)
return RefineDocumentsChain(
initial_llm_chain=initial_chain,
refine_llm_chain=refine_chain,
document_variable_name=document_variable_name,
initial_response_name=initial_response_name,
verbose=verbose,
**kwargs,
)
def load_summarize_chain(
llm: BaseLanguageModel,
chain_type: str = "stuff",
verbose: Optional[bool] = None,
**kwargs: Any,
) -> BaseCombineDocumentsChain:
"""Load summarizing chain.
Args:
llm: Language Model to use in the chain.
chain_type: Type of document combining chain to use. Should be one of "stuff",
"map_reduce", and "refine".
verbose: Whether chains should be run in verbose mode or not. Note that this
applies to all chains that make up the final chain.
Returns:
A chain to use for summarizing.
"""
loader_mapping: Mapping[str, LoadingCallable] = {
"stuff": _load_stuff_chain,
"map_reduce": _load_map_reduce_chain,
"refine": _load_refine_chain,
}
if chain_type not in loader_mapping:
raise ValueError(
f"Got unsupported chain type: {chain_type}. "
f"Should be one of {loader_mapping.keys()}"
)
return loader_mapping[chain_type](llm, verbose=verbose, **kwargs)
|