File size: 4,286 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
"""Base classes for LLM-powered router chains."""
from __future__ import annotations

from typing import Any, Dict, List, Optional, Type, cast

from langchain_core.exceptions import OutputParserException
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.prompts import BasePromptTemplate
from langchain_core.pydantic_v1 import root_validator

from langchain.callbacks.manager import (
    AsyncCallbackManagerForChainRun,
    CallbackManagerForChainRun,
)
from langchain.chains import LLMChain
from langchain.chains.router.base import RouterChain
from langchain.output_parsers.json import parse_and_check_json_markdown


class LLMRouterChain(RouterChain):
    """A router chain that uses an LLM chain to perform routing."""

    llm_chain: LLMChain
    """LLM chain used to perform routing"""

    @root_validator()
    def validate_prompt(cls, values: dict) -> dict:
        prompt = values["llm_chain"].prompt
        if prompt.output_parser is None:
            raise ValueError(
                "LLMRouterChain requires base llm_chain prompt to have an output"
                " parser that converts LLM text output to a dictionary with keys"
                " 'destination' and 'next_inputs'. Received a prompt with no output"
                " parser."
            )
        return values

    @property
    def input_keys(self) -> List[str]:
        """Will be whatever keys the LLM chain prompt expects.

        :meta private:
        """
        return self.llm_chain.input_keys

    def _validate_outputs(self, outputs: Dict[str, Any]) -> None:
        super()._validate_outputs(outputs)
        if not isinstance(outputs["next_inputs"], dict):
            raise ValueError

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
        callbacks = _run_manager.get_child()
        output = cast(
            Dict[str, Any],
            self.llm_chain.predict_and_parse(callbacks=callbacks, **inputs),
        )
        return output

    async def _acall(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
        callbacks = _run_manager.get_child()
        output = cast(
            Dict[str, Any],
            await self.llm_chain.apredict_and_parse(callbacks=callbacks, **inputs),
        )
        return output

    @classmethod
    def from_llm(
        cls, llm: BaseLanguageModel, prompt: BasePromptTemplate, **kwargs: Any
    ) -> LLMRouterChain:
        """Convenience constructor."""
        llm_chain = LLMChain(llm=llm, prompt=prompt)
        return cls(llm_chain=llm_chain, **kwargs)


class RouterOutputParser(BaseOutputParser[Dict[str, str]]):
    """Parser for output of router chain in the multi-prompt chain."""

    default_destination: str = "DEFAULT"
    next_inputs_type: Type = str
    next_inputs_inner_key: str = "input"

    def parse(self, text: str) -> Dict[str, Any]:
        try:
            expected_keys = ["destination", "next_inputs"]
            parsed = parse_and_check_json_markdown(text, expected_keys)
            if not isinstance(parsed["destination"], str):
                raise ValueError("Expected 'destination' to be a string.")
            if not isinstance(parsed["next_inputs"], self.next_inputs_type):
                raise ValueError(
                    f"Expected 'next_inputs' to be {self.next_inputs_type}."
                )
            parsed["next_inputs"] = {self.next_inputs_inner_key: parsed["next_inputs"]}
            if (
                parsed["destination"].strip().lower()
                == self.default_destination.lower()
            ):
                parsed["destination"] = None
            else:
                parsed["destination"] = parsed["destination"].strip()
            return parsed
        except Exception as e:
            raise OutputParserException(
                f"Parsing text\n{text}\n raised following error:\n{e}"
            )