File size: 9,836 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
"""Chain for question-answering against a vector database."""
from __future__ import annotations

import inspect
import warnings
from abc import abstractmethod
from typing import Any, Dict, List, Optional

from langchain_core.documents import Document
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import PromptTemplate
from langchain_core.pydantic_v1 import Extra, Field, root_validator
from langchain_core.retrievers import BaseRetriever
from langchain_core.vectorstores import VectorStore

from langchain.callbacks.manager import (
    AsyncCallbackManagerForChainRun,
    CallbackManagerForChainRun,
    Callbacks,
)
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.question_answering.stuff_prompt import PROMPT_SELECTOR


class BaseRetrievalQA(Chain):
    """Base class for question-answering chains."""

    combine_documents_chain: BaseCombineDocumentsChain
    """Chain to use to combine the documents."""
    input_key: str = "query"  #: :meta private:
    output_key: str = "result"  #: :meta private:
    return_source_documents: bool = False
    """Return the source documents or not."""

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid
        arbitrary_types_allowed = True
        allow_population_by_field_name = True

    @property
    def input_keys(self) -> List[str]:
        """Input keys.

        :meta private:
        """
        return [self.input_key]

    @property
    def output_keys(self) -> List[str]:
        """Output keys.

        :meta private:
        """
        _output_keys = [self.output_key]
        if self.return_source_documents:
            _output_keys = _output_keys + ["source_documents"]
        return _output_keys

    @classmethod
    def from_llm(
        cls,
        llm: BaseLanguageModel,
        prompt: Optional[PromptTemplate] = None,
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> BaseRetrievalQA:
        """Initialize from LLM."""
        _prompt = prompt or PROMPT_SELECTOR.get_prompt(llm)
        llm_chain = LLMChain(llm=llm, prompt=_prompt, callbacks=callbacks)
        document_prompt = PromptTemplate(
            input_variables=["page_content"], template="Context:\n{page_content}"
        )
        combine_documents_chain = StuffDocumentsChain(
            llm_chain=llm_chain,
            document_variable_name="context",
            document_prompt=document_prompt,
            callbacks=callbacks,
        )

        return cls(
            combine_documents_chain=combine_documents_chain,
            callbacks=callbacks,
            **kwargs,
        )

    @classmethod
    def from_chain_type(
        cls,
        llm: BaseLanguageModel,
        chain_type: str = "stuff",
        chain_type_kwargs: Optional[dict] = None,
        **kwargs: Any,
    ) -> BaseRetrievalQA:
        """Load chain from chain type."""
        _chain_type_kwargs = chain_type_kwargs or {}
        combine_documents_chain = load_qa_chain(
            llm, chain_type=chain_type, **_chain_type_kwargs
        )
        return cls(combine_documents_chain=combine_documents_chain, **kwargs)

    @abstractmethod
    def _get_docs(
        self,
        question: str,
        *,
        run_manager: CallbackManagerForChainRun,
    ) -> List[Document]:
        """Get documents to do question answering over."""

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        """Run get_relevant_text and llm on input query.

        If chain has 'return_source_documents' as 'True', returns
        the retrieved documents as well under the key 'source_documents'.

        Example:
        .. code-block:: python

        res = indexqa({'query': 'This is my query'})
        answer, docs = res['result'], res['source_documents']
        """
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
        question = inputs[self.input_key]
        accepts_run_manager = (
            "run_manager" in inspect.signature(self._get_docs).parameters
        )
        if accepts_run_manager:
            docs = self._get_docs(question, run_manager=_run_manager)
        else:
            docs = self._get_docs(question)  # type: ignore[call-arg]
        answer = self.combine_documents_chain.run(
            input_documents=docs, question=question, callbacks=_run_manager.get_child()
        )

        if self.return_source_documents:
            return {self.output_key: answer, "source_documents": docs}
        else:
            return {self.output_key: answer}

    @abstractmethod
    async def _aget_docs(
        self,
        question: str,
        *,
        run_manager: AsyncCallbackManagerForChainRun,
    ) -> List[Document]:
        """Get documents to do question answering over."""

    async def _acall(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        """Run get_relevant_text and llm on input query.

        If chain has 'return_source_documents' as 'True', returns
        the retrieved documents as well under the key 'source_documents'.

        Example:
        .. code-block:: python

        res = indexqa({'query': 'This is my query'})
        answer, docs = res['result'], res['source_documents']
        """
        _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
        question = inputs[self.input_key]
        accepts_run_manager = (
            "run_manager" in inspect.signature(self._aget_docs).parameters
        )
        if accepts_run_manager:
            docs = await self._aget_docs(question, run_manager=_run_manager)
        else:
            docs = await self._aget_docs(question)  # type: ignore[call-arg]
        answer = await self.combine_documents_chain.arun(
            input_documents=docs, question=question, callbacks=_run_manager.get_child()
        )

        if self.return_source_documents:
            return {self.output_key: answer, "source_documents": docs}
        else:
            return {self.output_key: answer}


class RetrievalQA(BaseRetrievalQA):
    """Chain for question-answering against an index.

    Example:
        .. code-block:: python

            from langchain.llms import OpenAI
            from langchain.chains import RetrievalQA
            from langchain.vectorstores import FAISS
            from langchain_core.vectorstores import VectorStoreRetriever
            retriever = VectorStoreRetriever(vectorstore=FAISS(...))
            retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever)

    """

    retriever: BaseRetriever = Field(exclude=True)

    def _get_docs(
        self,
        question: str,
        *,
        run_manager: CallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs."""
        return self.retriever.get_relevant_documents(
            question, callbacks=run_manager.get_child()
        )

    async def _aget_docs(
        self,
        question: str,
        *,
        run_manager: AsyncCallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs."""
        return await self.retriever.aget_relevant_documents(
            question, callbacks=run_manager.get_child()
        )

    @property
    def _chain_type(self) -> str:
        """Return the chain type."""
        return "retrieval_qa"


class VectorDBQA(BaseRetrievalQA):
    """Chain for question-answering against a vector database."""

    vectorstore: VectorStore = Field(exclude=True, alias="vectorstore")
    """Vector Database to connect to."""
    k: int = 4
    """Number of documents to query for."""
    search_type: str = "similarity"
    """Search type to use over vectorstore. `similarity` or `mmr`."""
    search_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Extra search args."""

    @root_validator()
    def raise_deprecation(cls, values: Dict) -> Dict:
        warnings.warn(
            "`VectorDBQA` is deprecated - "
            "please use `from langchain.chains import RetrievalQA`"
        )
        return values

    @root_validator()
    def validate_search_type(cls, values: Dict) -> Dict:
        """Validate search type."""
        if "search_type" in values:
            search_type = values["search_type"]
            if search_type not in ("similarity", "mmr"):
                raise ValueError(f"search_type of {search_type} not allowed.")
        return values

    def _get_docs(
        self,
        question: str,
        *,
        run_manager: CallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs."""
        if self.search_type == "similarity":
            docs = self.vectorstore.similarity_search(
                question, k=self.k, **self.search_kwargs
            )
        elif self.search_type == "mmr":
            docs = self.vectorstore.max_marginal_relevance_search(
                question, k=self.k, **self.search_kwargs
            )
        else:
            raise ValueError(f"search_type of {self.search_type} not allowed.")
        return docs

    async def _aget_docs(
        self,
        question: str,
        *,
        run_manager: AsyncCallbackManagerForChainRun,
    ) -> List[Document]:
        """Get docs."""
        raise NotImplementedError("VectorDBQA does not support async")

    @property
    def _chain_type(self) -> str:
        """Return the chain type."""
        return "vector_db_qa"