Spaces:
Runtime error
Runtime error
File size: 13,557 Bytes
129cd69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
"""LLM Chain for turning a user text query into a structured query."""
from __future__ import annotations
import json
from typing import Any, Callable, List, Optional, Sequence, Tuple, Union, cast
from langchain_core.exceptions import OutputParserException
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.prompts import BasePromptTemplate
from langchain_core.prompts.few_shot import FewShotPromptTemplate
from langchain_core.runnables import Runnable
from langchain.chains.llm import LLMChain
from langchain.chains.query_constructor.ir import (
Comparator,
Comparison,
FilterDirective,
Operation,
Operator,
StructuredQuery,
)
from langchain.chains.query_constructor.parser import get_parser
from langchain.chains.query_constructor.prompt import (
DEFAULT_EXAMPLES,
DEFAULT_PREFIX,
DEFAULT_SCHEMA_PROMPT,
DEFAULT_SUFFIX,
EXAMPLE_PROMPT,
EXAMPLES_WITH_LIMIT,
PREFIX_WITH_DATA_SOURCE,
SCHEMA_WITH_LIMIT_PROMPT,
SUFFIX_WITHOUT_DATA_SOURCE,
USER_SPECIFIED_EXAMPLE_PROMPT,
)
from langchain.chains.query_constructor.schema import AttributeInfo
from langchain.output_parsers.json import parse_and_check_json_markdown
class StructuredQueryOutputParser(BaseOutputParser[StructuredQuery]):
"""Output parser that parses a structured query."""
ast_parse: Callable
"""Callable that parses dict into internal representation of query language."""
def parse(self, text: str) -> StructuredQuery:
try:
expected_keys = ["query", "filter"]
allowed_keys = ["query", "filter", "limit"]
parsed = parse_and_check_json_markdown(text, expected_keys)
if len(parsed["query"]) == 0:
parsed["query"] = " "
if parsed["filter"] == "NO_FILTER" or not parsed["filter"]:
parsed["filter"] = None
else:
parsed["filter"] = self.ast_parse(parsed["filter"])
if not parsed.get("limit"):
parsed.pop("limit", None)
return StructuredQuery(
**{k: v for k, v in parsed.items() if k in allowed_keys}
)
except Exception as e:
raise OutputParserException(
f"Parsing text\n{text}\n raised following error:\n{e}"
)
@classmethod
def from_components(
cls,
allowed_comparators: Optional[Sequence[Comparator]] = None,
allowed_operators: Optional[Sequence[Operator]] = None,
allowed_attributes: Optional[Sequence[str]] = None,
fix_invalid: bool = False,
) -> StructuredQueryOutputParser:
"""
Create a structured query output parser from components.
Args:
allowed_comparators: allowed comparators
allowed_operators: allowed operators
Returns:
a structured query output parser
"""
ast_parse: Callable
if fix_invalid:
def ast_parse(raw_filter: str) -> Optional[FilterDirective]:
filter = cast(Optional[FilterDirective], get_parser().parse(raw_filter))
fixed = fix_filter_directive(
filter,
allowed_comparators=allowed_comparators,
allowed_operators=allowed_operators,
allowed_attributes=allowed_attributes,
)
return fixed
else:
ast_parse = get_parser(
allowed_comparators=allowed_comparators,
allowed_operators=allowed_operators,
allowed_attributes=allowed_attributes,
).parse
return cls(ast_parse=ast_parse)
def fix_filter_directive(
filter: Optional[FilterDirective],
*,
allowed_comparators: Optional[Sequence[Comparator]] = None,
allowed_operators: Optional[Sequence[Operator]] = None,
allowed_attributes: Optional[Sequence[str]] = None,
) -> Optional[FilterDirective]:
"""Fix invalid filter directive.
Args:
filter: Filter directive to fix.
allowed_comparators: allowed comparators. Defaults to all comparators.
allowed_operators: allowed operators. Defaults to all operators.
allowed_attributes: allowed attributes. Defaults to all attributes.
Returns:
Fixed filter directive.
"""
if (
not (allowed_comparators or allowed_operators or allowed_attributes)
) or not filter:
return filter
elif isinstance(filter, Comparison):
if allowed_comparators and filter.comparator not in allowed_comparators:
return None
if allowed_attributes and filter.attribute not in allowed_attributes:
return None
return filter
elif isinstance(filter, Operation):
if allowed_operators and filter.operator not in allowed_operators:
return None
args = [
fix_filter_directive(
arg,
allowed_comparators=allowed_comparators,
allowed_operators=allowed_operators,
allowed_attributes=allowed_attributes,
)
for arg in filter.arguments
]
args = [arg for arg in args if arg is not None]
if not args:
return None
elif len(args) == 1 and filter.operator in (Operator.AND, Operator.OR):
return args[0]
else:
return Operation(
operator=filter.operator,
arguments=args,
)
else:
return filter
def _format_attribute_info(info: Sequence[Union[AttributeInfo, dict]]) -> str:
info_dicts = {}
for i in info:
i_dict = dict(i)
info_dicts[i_dict.pop("name")] = i_dict
return json.dumps(info_dicts, indent=4).replace("{", "{{").replace("}", "}}")
def construct_examples(input_output_pairs: Sequence[Tuple[str, dict]]) -> List[dict]:
"""Construct examples from input-output pairs.
Args:
input_output_pairs: Sequence of input-output pairs.
Returns:
List of examples.
"""
examples = []
for i, (_input, output) in enumerate(input_output_pairs):
structured_request = (
json.dumps(output, indent=4).replace("{", "{{").replace("}", "}}")
)
example = {
"i": i + 1,
"user_query": _input,
"structured_request": structured_request,
}
examples.append(example)
return examples
def get_query_constructor_prompt(
document_contents: str,
attribute_info: Sequence[Union[AttributeInfo, dict]],
*,
examples: Optional[Sequence] = None,
allowed_comparators: Sequence[Comparator] = tuple(Comparator),
allowed_operators: Sequence[Operator] = tuple(Operator),
enable_limit: bool = False,
schema_prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> BasePromptTemplate:
"""Create query construction prompt.
Args:
document_contents: The contents of the document to be queried.
attribute_info: A list of AttributeInfo objects describing
the attributes of the document.
examples: Optional list of examples to use for the chain.
allowed_comparators: Sequence of allowed comparators.
allowed_operators: Sequence of allowed operators.
enable_limit: Whether to enable the limit operator. Defaults to False.
schema_prompt: Prompt for describing query schema. Should have string input
variables allowed_comparators and allowed_operators.
**kwargs: Additional named params to pass to FewShotPromptTemplate init.
Returns:
A prompt template that can be used to construct queries.
"""
default_schema_prompt = (
SCHEMA_WITH_LIMIT_PROMPT if enable_limit else DEFAULT_SCHEMA_PROMPT
)
schema_prompt = schema_prompt or default_schema_prompt
attribute_str = _format_attribute_info(attribute_info)
schema = schema_prompt.format(
allowed_comparators=" | ".join(allowed_comparators),
allowed_operators=" | ".join(allowed_operators),
)
if examples and isinstance(examples[0], tuple):
examples = construct_examples(examples)
example_prompt = USER_SPECIFIED_EXAMPLE_PROMPT
prefix = PREFIX_WITH_DATA_SOURCE.format(
schema=schema, content=document_contents, attributes=attribute_str
)
suffix = SUFFIX_WITHOUT_DATA_SOURCE.format(i=len(examples) + 1)
else:
examples = examples or (
EXAMPLES_WITH_LIMIT if enable_limit else DEFAULT_EXAMPLES
)
example_prompt = EXAMPLE_PROMPT
prefix = DEFAULT_PREFIX.format(schema=schema)
suffix = DEFAULT_SUFFIX.format(
i=len(examples) + 1, content=document_contents, attributes=attribute_str
)
return FewShotPromptTemplate(
examples=list(examples),
example_prompt=example_prompt,
input_variables=["query"],
suffix=suffix,
prefix=prefix,
**kwargs,
)
def load_query_constructor_chain(
llm: BaseLanguageModel,
document_contents: str,
attribute_info: Sequence[Union[AttributeInfo, dict]],
examples: Optional[List] = None,
allowed_comparators: Sequence[Comparator] = tuple(Comparator),
allowed_operators: Sequence[Operator] = tuple(Operator),
enable_limit: bool = False,
schema_prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> LLMChain:
"""Load a query constructor chain.
Args:
llm: BaseLanguageModel to use for the chain.
document_contents: The contents of the document to be queried.
attribute_info: Sequence of attributes in the document.
examples: Optional list of examples to use for the chain.
allowed_comparators: Sequence of allowed comparators. Defaults to all
Comparators.
allowed_operators: Sequence of allowed operators. Defaults to all Operators.
enable_limit: Whether to enable the limit operator. Defaults to False.
schema_prompt: Prompt for describing query schema. Should have string input
variables allowed_comparators and allowed_operators.
**kwargs: Arbitrary named params to pass to LLMChain.
Returns:
A LLMChain that can be used to construct queries.
"""
prompt = get_query_constructor_prompt(
document_contents,
attribute_info,
examples=examples,
allowed_comparators=allowed_comparators,
allowed_operators=allowed_operators,
enable_limit=enable_limit,
schema_prompt=schema_prompt,
)
allowed_attributes = []
for ainfo in attribute_info:
allowed_attributes.append(
ainfo.name if isinstance(ainfo, AttributeInfo) else ainfo["name"]
)
output_parser = StructuredQueryOutputParser.from_components(
allowed_comparators=allowed_comparators,
allowed_operators=allowed_operators,
allowed_attributes=allowed_attributes,
)
# For backwards compatibility.
prompt.output_parser = output_parser
return LLMChain(llm=llm, prompt=prompt, output_parser=output_parser, **kwargs)
def load_query_constructor_runnable(
llm: BaseLanguageModel,
document_contents: str,
attribute_info: Sequence[Union[AttributeInfo, dict]],
*,
examples: Optional[Sequence] = None,
allowed_comparators: Sequence[Comparator] = tuple(Comparator),
allowed_operators: Sequence[Operator] = tuple(Operator),
enable_limit: bool = False,
schema_prompt: Optional[BasePromptTemplate] = None,
fix_invalid: bool = False,
**kwargs: Any,
) -> Runnable:
"""Load a query constructor runnable chain.
Args:
llm: BaseLanguageModel to use for the chain.
document_contents: The contents of the document to be queried.
attribute_info: Sequence of attributes in the document.
examples: Optional list of examples to use for the chain.
allowed_comparators: Sequence of allowed comparators. Defaults to all
Comparators.
allowed_operators: Sequence of allowed operators. Defaults to all Operators.
enable_limit: Whether to enable the limit operator. Defaults to False.
schema_prompt: Prompt for describing query schema. Should have string input
variables allowed_comparators and allowed_operators.
fix_invalid: Whether to fix invalid filter directives by ignoring invalid
operators, comparators and attributes.
**kwargs: Additional named params to pass to FewShotPromptTemplate init.
Returns:
A Runnable that can be used to construct queries.
"""
prompt = get_query_constructor_prompt(
document_contents,
attribute_info,
examples=examples,
allowed_comparators=allowed_comparators,
allowed_operators=allowed_operators,
enable_limit=enable_limit,
schema_prompt=schema_prompt,
**kwargs,
)
allowed_attributes = []
for ainfo in attribute_info:
allowed_attributes.append(
ainfo.name if isinstance(ainfo, AttributeInfo) else ainfo["name"]
)
output_parser = StructuredQueryOutputParser.from_components(
allowed_comparators=allowed_comparators,
allowed_operators=allowed_operators,
allowed_attributes=allowed_attributes,
fix_invalid=fix_invalid,
)
return prompt | llm | output_parser
|