File size: 6,673 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""Chain for summarization with self-verification."""

from __future__ import annotations

import warnings
from pathlib import Path
from typing import Any, Dict, List, Optional

from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.pydantic_v1 import Extra, root_validator

from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.chains.sequential import SequentialChain

PROMPTS_DIR = Path(__file__).parent / "prompts"

CREATE_ASSERTIONS_PROMPT = PromptTemplate.from_file(
    PROMPTS_DIR / "create_facts.txt", ["summary"]
)
CHECK_ASSERTIONS_PROMPT = PromptTemplate.from_file(
    PROMPTS_DIR / "check_facts.txt", ["assertions"]
)
REVISED_SUMMARY_PROMPT = PromptTemplate.from_file(
    PROMPTS_DIR / "revise_summary.txt", ["checked_assertions", "summary"]
)
ARE_ALL_TRUE_PROMPT = PromptTemplate.from_file(
    PROMPTS_DIR / "are_all_true_prompt.txt", ["checked_assertions"]
)


def _load_sequential_chain(
    llm: BaseLanguageModel,
    create_assertions_prompt: PromptTemplate,
    check_assertions_prompt: PromptTemplate,
    revised_summary_prompt: PromptTemplate,
    are_all_true_prompt: PromptTemplate,
    verbose: bool = False,
) -> SequentialChain:
    chain = SequentialChain(
        chains=[
            LLMChain(
                llm=llm,
                prompt=create_assertions_prompt,
                output_key="assertions",
                verbose=verbose,
            ),
            LLMChain(
                llm=llm,
                prompt=check_assertions_prompt,
                output_key="checked_assertions",
                verbose=verbose,
            ),
            LLMChain(
                llm=llm,
                prompt=revised_summary_prompt,
                output_key="revised_summary",
                verbose=verbose,
            ),
            LLMChain(
                llm=llm,
                output_key="all_true",
                prompt=are_all_true_prompt,
                verbose=verbose,
            ),
        ],
        input_variables=["summary"],
        output_variables=["all_true", "revised_summary"],
        verbose=verbose,
    )
    return chain


class LLMSummarizationCheckerChain(Chain):
    """Chain for question-answering with self-verification.

    Example:
        .. code-block:: python

            from langchain.llms import OpenAI
            from langchain.chains import LLMSummarizationCheckerChain
            llm = OpenAI(temperature=0.0)
            checker_chain = LLMSummarizationCheckerChain.from_llm(llm)
    """

    sequential_chain: SequentialChain
    llm: Optional[BaseLanguageModel] = None
    """[Deprecated] LLM wrapper to use."""

    create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT
    """[Deprecated]"""
    check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT
    """[Deprecated]"""
    revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT
    """[Deprecated]"""
    are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT
    """[Deprecated]"""

    input_key: str = "query"  #: :meta private:
    output_key: str = "result"  #: :meta private:
    max_checks: int = 2
    """Maximum number of times to check the assertions. Default to double-checking."""

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid
        arbitrary_types_allowed = True

    @root_validator(pre=True)
    def raise_deprecation(cls, values: Dict) -> Dict:
        if "llm" in values:
            warnings.warn(
                "Directly instantiating an LLMSummarizationCheckerChain with an llm is "
                "deprecated. Please instantiate with"
                " sequential_chain argument or using the from_llm class method."
            )
            if "sequential_chain" not in values and values["llm"] is not None:
                values["sequential_chain"] = _load_sequential_chain(
                    values["llm"],
                    values.get("create_assertions_prompt", CREATE_ASSERTIONS_PROMPT),
                    values.get("check_assertions_prompt", CHECK_ASSERTIONS_PROMPT),
                    values.get("revised_summary_prompt", REVISED_SUMMARY_PROMPT),
                    values.get("are_all_true_prompt", ARE_ALL_TRUE_PROMPT),
                    verbose=values.get("verbose", False),
                )
        return values

    @property
    def input_keys(self) -> List[str]:
        """Return the singular input key.

        :meta private:
        """
        return [self.input_key]

    @property
    def output_keys(self) -> List[str]:
        """Return the singular output key.

        :meta private:
        """
        return [self.output_key]

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, str]:
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
        all_true = False
        count = 0
        output = None
        original_input = inputs[self.input_key]
        chain_input = original_input
        while not all_true and count < self.max_checks:
            output = self.sequential_chain(
                {"summary": chain_input}, callbacks=_run_manager.get_child()
            )
            count += 1

            if output["all_true"].strip() == "True":
                break

            if self.verbose:
                print(output["revised_summary"])

            chain_input = output["revised_summary"]

        if not output:
            raise ValueError("No output from chain")

        return {self.output_key: output["revised_summary"].strip()}

    @property
    def _chain_type(self) -> str:
        return "llm_summarization_checker_chain"

    @classmethod
    def from_llm(
        cls,
        llm: BaseLanguageModel,
        create_assertions_prompt: PromptTemplate = CREATE_ASSERTIONS_PROMPT,
        check_assertions_prompt: PromptTemplate = CHECK_ASSERTIONS_PROMPT,
        revised_summary_prompt: PromptTemplate = REVISED_SUMMARY_PROMPT,
        are_all_true_prompt: PromptTemplate = ARE_ALL_TRUE_PROMPT,
        verbose: bool = False,
        **kwargs: Any,
    ) -> LLMSummarizationCheckerChain:
        chain = _load_sequential_chain(
            llm,
            create_assertions_prompt,
            check_assertions_prompt,
            revised_summary_prompt,
            are_all_true_prompt,
            verbose=verbose,
        )
        return cls(sequential_chain=chain, verbose=verbose, **kwargs)