Spaces:
Runtime error
Runtime error
File size: 14,769 Bytes
129cd69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
"""Chain that just formats a prompt and calls an LLM."""
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast
from langchain_core.language_models import (
BaseLanguageModel,
LanguageModelInput,
)
from langchain_core.load.dump import dumpd
from langchain_core.messages import BaseMessage
from langchain_core.output_parsers import BaseLLMOutputParser, StrOutputParser
from langchain_core.outputs import ChatGeneration, Generation, LLMResult
from langchain_core.prompt_values import PromptValue
from langchain_core.prompts import BasePromptTemplate, PromptTemplate
from langchain_core.pydantic_v1 import Extra, Field
from langchain_core.runnables import (
Runnable,
RunnableBinding,
RunnableBranch,
RunnableWithFallbacks,
)
from langchain_core.runnables.configurable import DynamicRunnable
from langchain_core.utils.input import get_colored_text
from langchain.callbacks.manager import (
AsyncCallbackManager,
AsyncCallbackManagerForChainRun,
CallbackManager,
CallbackManagerForChainRun,
Callbacks,
)
from langchain.chains.base import Chain
class LLMChain(Chain):
"""Chain to run queries against LLMs.
Example:
.. code-block:: python
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain_core.prompts import PromptTemplate
prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(
input_variables=["adjective"], template=prompt_template
)
llm = LLMChain(llm=OpenAI(), prompt=prompt)
"""
@classmethod
def is_lc_serializable(self) -> bool:
return True
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: Union[
Runnable[LanguageModelInput, str], Runnable[LanguageModelInput, BaseMessage]
]
"""Language model to call."""
output_key: str = "text" #: :meta private:
output_parser: BaseLLMOutputParser = Field(default_factory=StrOutputParser)
"""Output parser to use.
Defaults to one that takes the most likely string but does not change it
otherwise."""
return_final_only: bool = True
"""Whether to return only the final parsed result. Defaults to True.
If false, will return a bunch of extra information about the generation."""
llm_kwargs: dict = Field(default_factory=dict)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
if self.return_final_only:
return [self.output_key]
else:
return [self.output_key, "full_generation"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
response = self.generate([inputs], run_manager=run_manager)
return self.create_outputs(response)[0]
def generate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
callbacks = run_manager.get_child() if run_manager else None
if isinstance(self.llm, BaseLanguageModel):
return self.llm.generate_prompt(
prompts,
stop,
callbacks=callbacks,
**self.llm_kwargs,
)
else:
results = self.llm.bind(stop=stop, **self.llm_kwargs).batch(
cast(List, prompts), {"callbacks": callbacks}
)
generations: List[List[Generation]] = []
for res in results:
if isinstance(res, BaseMessage):
generations.append([ChatGeneration(message=res)])
else:
generations.append([Generation(text=res)])
return LLMResult(generations=generations)
async def agenerate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager)
callbacks = run_manager.get_child() if run_manager else None
if isinstance(self.llm, BaseLanguageModel):
return await self.llm.agenerate_prompt(
prompts,
stop,
callbacks=callbacks,
**self.llm_kwargs,
)
else:
results = await self.llm.bind(stop=stop, **self.llm_kwargs).abatch(
cast(List, prompts), {"callbacks": callbacks}
)
generations: List[List[Generation]] = []
for res in results:
if isinstance(res, BaseMessage):
generations.append([ChatGeneration(message=res)])
else:
generations.append([Generation(text=res)])
return LLMResult(generations=generations)
def prep_prompts(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
if len(input_list) == 0:
return [], stop
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager:
run_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
async def aprep_prompts(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
if len(input_list) == 0:
return [], stop
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager:
await run_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
def apply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
callback_manager = CallbackManager.configure(
callbacks, self.callbacks, self.verbose
)
run_manager = callback_manager.on_chain_start(
dumpd(self),
{"input_list": input_list},
)
try:
response = self.generate(input_list, run_manager=run_manager)
except BaseException as e:
run_manager.on_chain_error(e)
raise e
outputs = self.create_outputs(response)
run_manager.on_chain_end({"outputs": outputs})
return outputs
async def aapply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
callback_manager = AsyncCallbackManager.configure(
callbacks, self.callbacks, self.verbose
)
run_manager = await callback_manager.on_chain_start(
dumpd(self),
{"input_list": input_list},
)
try:
response = await self.agenerate(input_list, run_manager=run_manager)
except BaseException as e:
await run_manager.on_chain_error(e)
raise e
outputs = self.create_outputs(response)
await run_manager.on_chain_end({"outputs": outputs})
return outputs
@property
def _run_output_key(self) -> str:
return self.output_key
def create_outputs(self, llm_result: LLMResult) -> List[Dict[str, Any]]:
"""Create outputs from response."""
result = [
# Get the text of the top generated string.
{
self.output_key: self.output_parser.parse_result(generation),
"full_generation": generation,
}
for generation in llm_result.generations
]
if self.return_final_only:
result = [{self.output_key: r[self.output_key]} for r in result]
return result
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
response = await self.agenerate([inputs], run_manager=run_manager)
return self.create_outputs(response)[0]
def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
Args:
callbacks: Callbacks to pass to LLMChain
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return self(kwargs, callbacks=callbacks)[self.output_key]
async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
Args:
callbacks: Callbacks to pass to LLMChain
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return (await self.acall(kwargs, callbacks=callbacks))[self.output_key]
def predict_and_parse(
self, callbacks: Callbacks = None, **kwargs: Any
) -> Union[str, List[str], Dict[str, Any]]:
"""Call predict and then parse the results."""
warnings.warn(
"The predict_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = self.predict(callbacks=callbacks, **kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
async def apredict_and_parse(
self, callbacks: Callbacks = None, **kwargs: Any
) -> Union[str, List[str], Dict[str, str]]:
"""Call apredict and then parse the results."""
warnings.warn(
"The apredict_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = await self.apredict(callbacks=callbacks, **kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
def apply_and_parse(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
warnings.warn(
"The apply_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = self.apply(input_list, callbacks=callbacks)
return self._parse_generation(result)
def _parse_generation(
self, generation: List[Dict[str, str]]
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
if self.prompt.output_parser is not None:
return [
self.prompt.output_parser.parse(res[self.output_key])
for res in generation
]
else:
return generation
async def aapply_and_parse(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
warnings.warn(
"The aapply_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = await self.aapply(input_list, callbacks=callbacks)
return self._parse_generation(result)
@property
def _chain_type(self) -> str:
return "llm_chain"
@classmethod
def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain:
"""Create LLMChain from LLM and template."""
prompt_template = PromptTemplate.from_template(template)
return cls(llm=llm, prompt=prompt_template)
def _get_num_tokens(self, text: str) -> int:
return _get_language_model(self.llm).get_num_tokens(text)
def _get_language_model(llm_like: Runnable) -> BaseLanguageModel:
if isinstance(llm_like, BaseLanguageModel):
return llm_like
elif isinstance(llm_like, RunnableBinding):
return _get_language_model(llm_like.bound)
elif isinstance(llm_like, RunnableWithFallbacks):
return _get_language_model(llm_like.runnable)
elif isinstance(llm_like, (RunnableBranch, DynamicRunnable)):
return _get_language_model(llm_like.default)
else:
raise ValueError(
f"Unable to extract BaseLanguageModel from llm_like object of type "
f"{type(llm_like)}"
)
|