File size: 14,769 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
"""Chain that just formats a prompt and calls an LLM."""
from __future__ import annotations

import warnings
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union, cast

from langchain_core.language_models import (
    BaseLanguageModel,
    LanguageModelInput,
)
from langchain_core.load.dump import dumpd
from langchain_core.messages import BaseMessage
from langchain_core.output_parsers import BaseLLMOutputParser, StrOutputParser
from langchain_core.outputs import ChatGeneration, Generation, LLMResult
from langchain_core.prompt_values import PromptValue
from langchain_core.prompts import BasePromptTemplate, PromptTemplate
from langchain_core.pydantic_v1 import Extra, Field
from langchain_core.runnables import (
    Runnable,
    RunnableBinding,
    RunnableBranch,
    RunnableWithFallbacks,
)
from langchain_core.runnables.configurable import DynamicRunnable
from langchain_core.utils.input import get_colored_text

from langchain.callbacks.manager import (
    AsyncCallbackManager,
    AsyncCallbackManagerForChainRun,
    CallbackManager,
    CallbackManagerForChainRun,
    Callbacks,
)
from langchain.chains.base import Chain


class LLMChain(Chain):
    """Chain to run queries against LLMs.

    Example:
        .. code-block:: python

            from langchain.chains import LLMChain
            from langchain.llms import OpenAI
            from langchain_core.prompts import PromptTemplate
            prompt_template = "Tell me a {adjective} joke"
            prompt = PromptTemplate(
                input_variables=["adjective"], template=prompt_template
            )
            llm = LLMChain(llm=OpenAI(), prompt=prompt)
    """

    @classmethod
    def is_lc_serializable(self) -> bool:
        return True

    prompt: BasePromptTemplate
    """Prompt object to use."""
    llm: Union[
        Runnable[LanguageModelInput, str], Runnable[LanguageModelInput, BaseMessage]
    ]
    """Language model to call."""
    output_key: str = "text"  #: :meta private:
    output_parser: BaseLLMOutputParser = Field(default_factory=StrOutputParser)
    """Output parser to use.
    Defaults to one that takes the most likely string but does not change it 
    otherwise."""
    return_final_only: bool = True
    """Whether to return only the final parsed result. Defaults to True.
    If false, will return a bunch of extra information about the generation."""
    llm_kwargs: dict = Field(default_factory=dict)

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid
        arbitrary_types_allowed = True

    @property
    def input_keys(self) -> List[str]:
        """Will be whatever keys the prompt expects.

        :meta private:
        """
        return self.prompt.input_variables

    @property
    def output_keys(self) -> List[str]:
        """Will always return text key.

        :meta private:
        """
        if self.return_final_only:
            return [self.output_key]
        else:
            return [self.output_key, "full_generation"]

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, str]:
        response = self.generate([inputs], run_manager=run_manager)
        return self.create_outputs(response)[0]

    def generate(
        self,
        input_list: List[Dict[str, Any]],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> LLMResult:
        """Generate LLM result from inputs."""
        prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
        callbacks = run_manager.get_child() if run_manager else None
        if isinstance(self.llm, BaseLanguageModel):
            return self.llm.generate_prompt(
                prompts,
                stop,
                callbacks=callbacks,
                **self.llm_kwargs,
            )
        else:
            results = self.llm.bind(stop=stop, **self.llm_kwargs).batch(
                cast(List, prompts), {"callbacks": callbacks}
            )
            generations: List[List[Generation]] = []
            for res in results:
                if isinstance(res, BaseMessage):
                    generations.append([ChatGeneration(message=res)])
                else:
                    generations.append([Generation(text=res)])
            return LLMResult(generations=generations)

    async def agenerate(
        self,
        input_list: List[Dict[str, Any]],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> LLMResult:
        """Generate LLM result from inputs."""
        prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager)
        callbacks = run_manager.get_child() if run_manager else None
        if isinstance(self.llm, BaseLanguageModel):
            return await self.llm.agenerate_prompt(
                prompts,
                stop,
                callbacks=callbacks,
                **self.llm_kwargs,
            )
        else:
            results = await self.llm.bind(stop=stop, **self.llm_kwargs).abatch(
                cast(List, prompts), {"callbacks": callbacks}
            )
            generations: List[List[Generation]] = []
            for res in results:
                if isinstance(res, BaseMessage):
                    generations.append([ChatGeneration(message=res)])
                else:
                    generations.append([Generation(text=res)])
            return LLMResult(generations=generations)

    def prep_prompts(
        self,
        input_list: List[Dict[str, Any]],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Tuple[List[PromptValue], Optional[List[str]]]:
        """Prepare prompts from inputs."""
        stop = None
        if len(input_list) == 0:
            return [], stop
        if "stop" in input_list[0]:
            stop = input_list[0]["stop"]
        prompts = []
        for inputs in input_list:
            selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
            prompt = self.prompt.format_prompt(**selected_inputs)
            _colored_text = get_colored_text(prompt.to_string(), "green")
            _text = "Prompt after formatting:\n" + _colored_text
            if run_manager:
                run_manager.on_text(_text, end="\n", verbose=self.verbose)
            if "stop" in inputs and inputs["stop"] != stop:
                raise ValueError(
                    "If `stop` is present in any inputs, should be present in all."
                )
            prompts.append(prompt)
        return prompts, stop

    async def aprep_prompts(
        self,
        input_list: List[Dict[str, Any]],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Tuple[List[PromptValue], Optional[List[str]]]:
        """Prepare prompts from inputs."""
        stop = None
        if len(input_list) == 0:
            return [], stop
        if "stop" in input_list[0]:
            stop = input_list[0]["stop"]
        prompts = []
        for inputs in input_list:
            selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
            prompt = self.prompt.format_prompt(**selected_inputs)
            _colored_text = get_colored_text(prompt.to_string(), "green")
            _text = "Prompt after formatting:\n" + _colored_text
            if run_manager:
                await run_manager.on_text(_text, end="\n", verbose=self.verbose)
            if "stop" in inputs and inputs["stop"] != stop:
                raise ValueError(
                    "If `stop` is present in any inputs, should be present in all."
                )
            prompts.append(prompt)
        return prompts, stop

    def apply(
        self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
    ) -> List[Dict[str, str]]:
        """Utilize the LLM generate method for speed gains."""
        callback_manager = CallbackManager.configure(
            callbacks, self.callbacks, self.verbose
        )
        run_manager = callback_manager.on_chain_start(
            dumpd(self),
            {"input_list": input_list},
        )
        try:
            response = self.generate(input_list, run_manager=run_manager)
        except BaseException as e:
            run_manager.on_chain_error(e)
            raise e
        outputs = self.create_outputs(response)
        run_manager.on_chain_end({"outputs": outputs})
        return outputs

    async def aapply(
        self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
    ) -> List[Dict[str, str]]:
        """Utilize the LLM generate method for speed gains."""
        callback_manager = AsyncCallbackManager.configure(
            callbacks, self.callbacks, self.verbose
        )
        run_manager = await callback_manager.on_chain_start(
            dumpd(self),
            {"input_list": input_list},
        )
        try:
            response = await self.agenerate(input_list, run_manager=run_manager)
        except BaseException as e:
            await run_manager.on_chain_error(e)
            raise e
        outputs = self.create_outputs(response)
        await run_manager.on_chain_end({"outputs": outputs})
        return outputs

    @property
    def _run_output_key(self) -> str:
        return self.output_key

    def create_outputs(self, llm_result: LLMResult) -> List[Dict[str, Any]]:
        """Create outputs from response."""
        result = [
            # Get the text of the top generated string.
            {
                self.output_key: self.output_parser.parse_result(generation),
                "full_generation": generation,
            }
            for generation in llm_result.generations
        ]
        if self.return_final_only:
            result = [{self.output_key: r[self.output_key]} for r in result]
        return result

    async def _acall(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, str]:
        response = await self.agenerate([inputs], run_manager=run_manager)
        return self.create_outputs(response)[0]

    def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
        """Format prompt with kwargs and pass to LLM.

        Args:
            callbacks: Callbacks to pass to LLMChain
            **kwargs: Keys to pass to prompt template.

        Returns:
            Completion from LLM.

        Example:
            .. code-block:: python

                completion = llm.predict(adjective="funny")
        """
        return self(kwargs, callbacks=callbacks)[self.output_key]

    async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
        """Format prompt with kwargs and pass to LLM.

        Args:
            callbacks: Callbacks to pass to LLMChain
            **kwargs: Keys to pass to prompt template.

        Returns:
            Completion from LLM.

        Example:
            .. code-block:: python

                completion = llm.predict(adjective="funny")
        """
        return (await self.acall(kwargs, callbacks=callbacks))[self.output_key]

    def predict_and_parse(
        self, callbacks: Callbacks = None, **kwargs: Any
    ) -> Union[str, List[str], Dict[str, Any]]:
        """Call predict and then parse the results."""
        warnings.warn(
            "The predict_and_parse method is deprecated, "
            "instead pass an output parser directly to LLMChain."
        )
        result = self.predict(callbacks=callbacks, **kwargs)
        if self.prompt.output_parser is not None:
            return self.prompt.output_parser.parse(result)
        else:
            return result

    async def apredict_and_parse(
        self, callbacks: Callbacks = None, **kwargs: Any
    ) -> Union[str, List[str], Dict[str, str]]:
        """Call apredict and then parse the results."""
        warnings.warn(
            "The apredict_and_parse method is deprecated, "
            "instead pass an output parser directly to LLMChain."
        )
        result = await self.apredict(callbacks=callbacks, **kwargs)
        if self.prompt.output_parser is not None:
            return self.prompt.output_parser.parse(result)
        else:
            return result

    def apply_and_parse(
        self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
    ) -> Sequence[Union[str, List[str], Dict[str, str]]]:
        """Call apply and then parse the results."""
        warnings.warn(
            "The apply_and_parse method is deprecated, "
            "instead pass an output parser directly to LLMChain."
        )
        result = self.apply(input_list, callbacks=callbacks)
        return self._parse_generation(result)

    def _parse_generation(
        self, generation: List[Dict[str, str]]
    ) -> Sequence[Union[str, List[str], Dict[str, str]]]:
        if self.prompt.output_parser is not None:
            return [
                self.prompt.output_parser.parse(res[self.output_key])
                for res in generation
            ]
        else:
            return generation

    async def aapply_and_parse(
        self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
    ) -> Sequence[Union[str, List[str], Dict[str, str]]]:
        """Call apply and then parse the results."""
        warnings.warn(
            "The aapply_and_parse method is deprecated, "
            "instead pass an output parser directly to LLMChain."
        )
        result = await self.aapply(input_list, callbacks=callbacks)
        return self._parse_generation(result)

    @property
    def _chain_type(self) -> str:
        return "llm_chain"

    @classmethod
    def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain:
        """Create LLMChain from LLM and template."""
        prompt_template = PromptTemplate.from_template(template)
        return cls(llm=llm, prompt=prompt_template)

    def _get_num_tokens(self, text: str) -> int:
        return _get_language_model(self.llm).get_num_tokens(text)


def _get_language_model(llm_like: Runnable) -> BaseLanguageModel:
    if isinstance(llm_like, BaseLanguageModel):
        return llm_like
    elif isinstance(llm_like, RunnableBinding):
        return _get_language_model(llm_like.bound)
    elif isinstance(llm_like, RunnableWithFallbacks):
        return _get_language_model(llm_like.runnable)
    elif isinstance(llm_like, (RunnableBranch, DynamicRunnable)):
        return _get_language_model(llm_like.default)
    else:
        raise ValueError(
            f"Unable to extract BaseLanguageModel from llm_like object of type "
            f"{type(llm_like)}"
        )