File size: 8,866 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from __future__ import annotations

import re
from abc import abstractmethod
from typing import Any, Dict, List, Optional, Sequence, Tuple

import numpy as np
from langchain_core.language_models import BaseLanguageModel
from langchain_core.outputs import Generation
from langchain_core.prompts import BasePromptTemplate
from langchain_core.pydantic_v1 import Field
from langchain_core.retrievers import BaseRetriever

from langchain.callbacks.manager import (
    CallbackManagerForChainRun,
)
from langchain.chains.base import Chain
from langchain.chains.flare.prompts import (
    PROMPT,
    QUESTION_GENERATOR_PROMPT,
    FinishedOutputParser,
)
from langchain.chains.llm import LLMChain
from langchain.llms.openai import OpenAI


class _ResponseChain(LLMChain):
    """Base class for chains that generate responses."""

    prompt: BasePromptTemplate = PROMPT

    @property
    def input_keys(self) -> List[str]:
        return self.prompt.input_variables

    def generate_tokens_and_log_probs(
        self,
        _input: Dict[str, Any],
        *,
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Tuple[Sequence[str], Sequence[float]]:
        llm_result = self.generate([_input], run_manager=run_manager)
        return self._extract_tokens_and_log_probs(llm_result.generations[0])

    @abstractmethod
    def _extract_tokens_and_log_probs(
        self, generations: List[Generation]
    ) -> Tuple[Sequence[str], Sequence[float]]:
        """Extract tokens and log probs from response."""


class _OpenAIResponseChain(_ResponseChain):
    """Chain that generates responses from user input and context."""

    llm: OpenAI = Field(
        default_factory=lambda: OpenAI(
            max_tokens=32, model_kwargs={"logprobs": 1}, temperature=0
        )
    )

    def _extract_tokens_and_log_probs(
        self, generations: List[Generation]
    ) -> Tuple[Sequence[str], Sequence[float]]:
        tokens = []
        log_probs = []
        for gen in generations:
            if gen.generation_info is None:
                raise ValueError
            tokens.extend(gen.generation_info["logprobs"]["tokens"])
            log_probs.extend(gen.generation_info["logprobs"]["token_logprobs"])
        return tokens, log_probs


class QuestionGeneratorChain(LLMChain):
    """Chain that generates questions from uncertain spans."""

    prompt: BasePromptTemplate = QUESTION_GENERATOR_PROMPT
    """Prompt template for the chain."""

    @property
    def input_keys(self) -> List[str]:
        """Input keys for the chain."""
        return ["user_input", "context", "response"]


def _low_confidence_spans(
    tokens: Sequence[str],
    log_probs: Sequence[float],
    min_prob: float,
    min_token_gap: int,
    num_pad_tokens: int,
) -> List[str]:
    _low_idx = np.where(np.exp(log_probs) < min_prob)[0]
    low_idx = [i for i in _low_idx if re.search(r"\w", tokens[i])]
    if len(low_idx) == 0:
        return []
    spans = [[low_idx[0], low_idx[0] + num_pad_tokens + 1]]
    for i, idx in enumerate(low_idx[1:]):
        end = idx + num_pad_tokens + 1
        if idx - low_idx[i] < min_token_gap:
            spans[-1][1] = end
        else:
            spans.append([idx, end])
    return ["".join(tokens[start:end]) for start, end in spans]


class FlareChain(Chain):
    """Chain that combines a retriever, a question generator,
    and a response generator."""

    question_generator_chain: QuestionGeneratorChain
    """Chain that generates questions from uncertain spans."""
    response_chain: _ResponseChain = Field(default_factory=_OpenAIResponseChain)
    """Chain that generates responses from user input and context."""
    output_parser: FinishedOutputParser = Field(default_factory=FinishedOutputParser)
    """Parser that determines whether the chain is finished."""
    retriever: BaseRetriever
    """Retriever that retrieves relevant documents from a user input."""
    min_prob: float = 0.2
    """Minimum probability for a token to be considered low confidence."""
    min_token_gap: int = 5
    """Minimum number of tokens between two low confidence spans."""
    num_pad_tokens: int = 2
    """Number of tokens to pad around a low confidence span."""
    max_iter: int = 10
    """Maximum number of iterations."""
    start_with_retrieval: bool = True
    """Whether to start with retrieval."""

    @property
    def input_keys(self) -> List[str]:
        """Input keys for the chain."""
        return ["user_input"]

    @property
    def output_keys(self) -> List[str]:
        """Output keys for the chain."""
        return ["response"]

    def _do_generation(
        self,
        questions: List[str],
        user_input: str,
        response: str,
        _run_manager: CallbackManagerForChainRun,
    ) -> Tuple[str, bool]:
        callbacks = _run_manager.get_child()
        docs = []
        for question in questions:
            docs.extend(self.retriever.get_relevant_documents(question))
        context = "\n\n".join(d.page_content for d in docs)
        result = self.response_chain.predict(
            user_input=user_input,
            context=context,
            response=response,
            callbacks=callbacks,
        )
        marginal, finished = self.output_parser.parse(result)
        return marginal, finished

    def _do_retrieval(
        self,
        low_confidence_spans: List[str],
        _run_manager: CallbackManagerForChainRun,
        user_input: str,
        response: str,
        initial_response: str,
    ) -> Tuple[str, bool]:
        question_gen_inputs = [
            {
                "user_input": user_input,
                "current_response": initial_response,
                "uncertain_span": span,
            }
            for span in low_confidence_spans
        ]
        callbacks = _run_manager.get_child()
        question_gen_outputs = self.question_generator_chain.apply(
            question_gen_inputs, callbacks=callbacks
        )
        questions = [
            output[self.question_generator_chain.output_keys[0]]
            for output in question_gen_outputs
        ]
        _run_manager.on_text(
            f"Generated Questions: {questions}", color="yellow", end="\n"
        )
        return self._do_generation(questions, user_input, response, _run_manager)

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()

        user_input = inputs[self.input_keys[0]]

        response = ""

        for i in range(self.max_iter):
            _run_manager.on_text(
                f"Current Response: {response}", color="blue", end="\n"
            )
            _input = {"user_input": user_input, "context": "", "response": response}
            tokens, log_probs = self.response_chain.generate_tokens_and_log_probs(
                _input, run_manager=_run_manager
            )
            low_confidence_spans = _low_confidence_spans(
                tokens,
                log_probs,
                self.min_prob,
                self.min_token_gap,
                self.num_pad_tokens,
            )
            initial_response = response.strip() + " " + "".join(tokens)
            if not low_confidence_spans:
                response = initial_response
                final_response, finished = self.output_parser.parse(response)
                if finished:
                    return {self.output_keys[0]: final_response}
                continue

            marginal, finished = self._do_retrieval(
                low_confidence_spans,
                _run_manager,
                user_input,
                response,
                initial_response,
            )
            response = response.strip() + " " + marginal
            if finished:
                break
        return {self.output_keys[0]: response}

    @classmethod
    def from_llm(
        cls, llm: BaseLanguageModel, max_generation_len: int = 32, **kwargs: Any
    ) -> FlareChain:
        """Creates a FlareChain from a language model.

        Args:
            llm: Language model to use.
            max_generation_len: Maximum length of the generated response.
            **kwargs: Additional arguments to pass to the constructor.

        Returns:
            FlareChain class with the given language model.
        """
        question_gen_chain = QuestionGeneratorChain(llm=llm)
        response_llm = OpenAI(
            max_tokens=max_generation_len, model_kwargs={"logprobs": 1}, temperature=0
        )
        response_chain = _OpenAIResponseChain(llm=response_llm)
        return cls(
            question_generator_chain=question_gen_chain,
            response_chain=response_chain,
            **kwargs,
        )