File size: 6,334 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""Chain for applying constitutional principles to the outputs of another chain."""
from typing import Any, Dict, List, Optional

from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate

from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.constitutional_ai.models import ConstitutionalPrinciple
from langchain.chains.constitutional_ai.principles import PRINCIPLES
from langchain.chains.constitutional_ai.prompts import CRITIQUE_PROMPT, REVISION_PROMPT
from langchain.chains.llm import LLMChain


class ConstitutionalChain(Chain):
    """Chain for applying constitutional principles.

    Example:
        .. code-block:: python

            from langchain.llms import OpenAI
            from langchain.chains import LLMChain, ConstitutionalChain
            from langchain.chains.constitutional_ai.models \
                import ConstitutionalPrinciple

            llm = OpenAI()

            qa_prompt = PromptTemplate(
                template="Q: {question} A:",
                input_variables=["question"],
            )
            qa_chain = LLMChain(llm=llm, prompt=qa_prompt)

            constitutional_chain = ConstitutionalChain.from_llm(
                llm=llm,
                chain=qa_chain,
                constitutional_principles=[
                    ConstitutionalPrinciple(
                        critique_request="Tell if this answer is good.",
                        revision_request="Give a better answer.",
                    )
                ],
            )

            constitutional_chain.run(question="What is the meaning of life?")
    """

    chain: LLMChain
    constitutional_principles: List[ConstitutionalPrinciple]
    critique_chain: LLMChain
    revision_chain: LLMChain
    return_intermediate_steps: bool = False

    @classmethod
    def get_principles(
        cls, names: Optional[List[str]] = None
    ) -> List[ConstitutionalPrinciple]:
        if names is None:
            return list(PRINCIPLES.values())
        else:
            return [PRINCIPLES[name] for name in names]

    @classmethod
    def from_llm(
        cls,
        llm: BaseLanguageModel,
        chain: LLMChain,
        critique_prompt: BasePromptTemplate = CRITIQUE_PROMPT,
        revision_prompt: BasePromptTemplate = REVISION_PROMPT,
        **kwargs: Any,
    ) -> "ConstitutionalChain":
        """Create a chain from an LLM."""
        critique_chain = LLMChain(llm=llm, prompt=critique_prompt)
        revision_chain = LLMChain(llm=llm, prompt=revision_prompt)
        return cls(
            chain=chain,
            critique_chain=critique_chain,
            revision_chain=revision_chain,
            **kwargs,
        )

    @property
    def input_keys(self) -> List[str]:
        """Input keys."""
        return self.chain.input_keys

    @property
    def output_keys(self) -> List[str]:
        """Output keys."""
        if self.return_intermediate_steps:
            return ["output", "critiques_and_revisions", "initial_output"]
        return ["output"]

    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
        response = self.chain.run(
            **inputs,
            callbacks=_run_manager.get_child("original"),
        )
        initial_response = response
        input_prompt = self.chain.prompt.format(**inputs)

        _run_manager.on_text(
            text="Initial response: " + response + "\n\n",
            verbose=self.verbose,
            color="yellow",
        )
        critiques_and_revisions = []
        for constitutional_principle in self.constitutional_principles:
            # Do critique

            raw_critique = self.critique_chain.run(
                input_prompt=input_prompt,
                output_from_model=response,
                critique_request=constitutional_principle.critique_request,
                callbacks=_run_manager.get_child("critique"),
            )
            critique = self._parse_critique(
                output_string=raw_critique,
            ).strip()

            # if the critique contains "No critique needed", then we're done
            # in this case, initial_output is the same as output,
            # but we'll keep it for consistency
            if "no critique needed" in critique.lower():
                critiques_and_revisions.append((critique, ""))
                continue

            # Do revision

            revision = self.revision_chain.run(
                input_prompt=input_prompt,
                output_from_model=response,
                critique_request=constitutional_principle.critique_request,
                critique=critique,
                revision_request=constitutional_principle.revision_request,
                callbacks=_run_manager.get_child("revision"),
            ).strip()
            response = revision
            critiques_and_revisions.append((critique, revision))

            _run_manager.on_text(
                text=f"Applying {constitutional_principle.name}..." + "\n\n",
                verbose=self.verbose,
                color="green",
            )

            _run_manager.on_text(
                text="Critique: " + critique + "\n\n",
                verbose=self.verbose,
                color="blue",
            )

            _run_manager.on_text(
                text="Updated response: " + revision + "\n\n",
                verbose=self.verbose,
                color="yellow",
            )

        final_output: Dict[str, Any] = {"output": response}
        if self.return_intermediate_steps:
            final_output["initial_output"] = initial_response
            final_output["critiques_and_revisions"] = critiques_and_revisions
        return final_output

    @staticmethod
    def _parse_critique(output_string: str) -> str:
        if "Revision request:" not in output_string:
            return output_string
        output_string = output_string.split("Revision request:")[0]
        if "\n\n" in output_string:
            output_string = output_string.split("\n\n")[0]
        return output_string