File size: 26,632 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
"""Base interface that all chains should implement."""
import asyncio
import inspect
import json
import logging
import warnings
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any, Dict, List, Optional, Type, Union

import yaml
from langchain_core.load.dump import dumpd
from langchain_core.memory import BaseMemory
from langchain_core.outputs import RunInfo
from langchain_core.pydantic_v1 import (
    BaseModel,
    Field,
    create_model,
    root_validator,
    validator,
)
from langchain_core.runnables import RunnableConfig, RunnableSerializable

from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import (
    AsyncCallbackManager,
    AsyncCallbackManagerForChainRun,
    CallbackManager,
    CallbackManagerForChainRun,
    Callbacks,
)
from langchain.schema import RUN_KEY

logger = logging.getLogger(__name__)


def _get_verbosity() -> bool:
    from langchain.globals import get_verbose

    return get_verbose()


class Chain(RunnableSerializable[Dict[str, Any], Dict[str, Any]], ABC):
    """Abstract base class for creating structured sequences of calls to components.

    Chains should be used to encode a sequence of calls to components like
    models, document retrievers, other chains, etc., and provide a simple interface
    to this sequence.

    The Chain interface makes it easy to create apps that are:
        - Stateful: add Memory to any Chain to give it state,
        - Observable: pass Callbacks to a Chain to execute additional functionality,
            like logging, outside the main sequence of component calls,
        - Composable: the Chain API is flexible enough that it is easy to combine
            Chains with other components, including other Chains.

    The main methods exposed by chains are:
        - `__call__`: Chains are callable. The `__call__` method is the primary way to
            execute a Chain. This takes inputs as a dictionary and returns a
            dictionary output.
        - `run`: A convenience method that takes inputs as args/kwargs and returns the
            output as a string or object. This method can only be used for a subset of
            chains and cannot return as rich of an output as `__call__`.
    """

    def get_input_schema(
        self, config: Optional[RunnableConfig] = None
    ) -> Type[BaseModel]:
        # This is correct, but pydantic typings/mypy don't think so.
        return create_model(  # type: ignore[call-overload]
            "ChainInput", **{k: (Any, None) for k in self.input_keys}
        )

    def get_output_schema(
        self, config: Optional[RunnableConfig] = None
    ) -> Type[BaseModel]:
        # This is correct, but pydantic typings/mypy don't think so.
        return create_model(  # type: ignore[call-overload]
            "ChainOutput", **{k: (Any, None) for k in self.output_keys}
        )

    def invoke(
        self,
        input: Dict[str, Any],
        config: Optional[RunnableConfig] = None,
        **kwargs: Any,
    ) -> Dict[str, Any]:
        config = config or {}
        return self(
            input,
            callbacks=config.get("callbacks"),
            tags=config.get("tags"),
            metadata=config.get("metadata"),
            run_name=config.get("run_name"),
            **kwargs,
        )

    async def ainvoke(
        self,
        input: Dict[str, Any],
        config: Optional[RunnableConfig] = None,
        **kwargs: Any,
    ) -> Dict[str, Any]:
        config = config or {}
        return await self.acall(
            input,
            callbacks=config.get("callbacks"),
            tags=config.get("tags"),
            metadata=config.get("metadata"),
            run_name=config.get("run_name"),
            **kwargs,
        )

    memory: Optional[BaseMemory] = None
    """Optional memory object. Defaults to None.
    Memory is a class that gets called at the start
    and at the end of every chain. At the start, memory loads variables and passes
    them along in the chain. At the end, it saves any returned variables.
    There are many different types of memory - please see memory docs
    for the full catalog."""
    callbacks: Callbacks = Field(default=None, exclude=True)
    """Optional list of callback handlers (or callback manager). Defaults to None.
    Callback handlers are called throughout the lifecycle of a call to a chain,
    starting with on_chain_start, ending with on_chain_end or on_chain_error.
    Each custom chain can optionally call additional callback methods, see Callback docs
    for full details."""
    callback_manager: Optional[BaseCallbackManager] = Field(default=None, exclude=True)
    """Deprecated, use `callbacks` instead."""
    verbose: bool = Field(default_factory=_get_verbosity)
    """Whether or not run in verbose mode. In verbose mode, some intermediate logs
    will be printed to the console. Defaults to the global `verbose` value,
    accessible via `langchain.globals.get_verbose()`."""
    tags: Optional[List[str]] = None
    """Optional list of tags associated with the chain. Defaults to None.
    These tags will be associated with each call to this chain,
    and passed as arguments to the handlers defined in `callbacks`.
    You can use these to eg identify a specific instance of a chain with its use case.
    """
    metadata: Optional[Dict[str, Any]] = None
    """Optional metadata associated with the chain. Defaults to None.
    This metadata will be associated with each call to this chain,
    and passed as arguments to the handlers defined in `callbacks`.
    You can use these to eg identify a specific instance of a chain with its use case.
    """

    class Config:
        """Configuration for this pydantic object."""

        arbitrary_types_allowed = True

    @property
    def _chain_type(self) -> str:
        raise NotImplementedError("Saving not supported for this chain type.")

    @root_validator()
    def raise_callback_manager_deprecation(cls, values: Dict) -> Dict:
        """Raise deprecation warning if callback_manager is used."""
        if values.get("callback_manager") is not None:
            if values.get("callbacks") is not None:
                raise ValueError(
                    "Cannot specify both callback_manager and callbacks. "
                    "callback_manager is deprecated, callbacks is the preferred "
                    "parameter to pass in."
                )
            warnings.warn(
                "callback_manager is deprecated. Please use callbacks instead.",
                DeprecationWarning,
            )
            values["callbacks"] = values.pop("callback_manager", None)
        return values

    @validator("verbose", pre=True, always=True)
    def set_verbose(cls, verbose: Optional[bool]) -> bool:
        """Set the chain verbosity.

        Defaults to the global setting if not specified by the user.
        """
        if verbose is None:
            return _get_verbosity()
        else:
            return verbose

    @property
    @abstractmethod
    def input_keys(self) -> List[str]:
        """Keys expected to be in the chain input."""

    @property
    @abstractmethod
    def output_keys(self) -> List[str]:
        """Keys expected to be in the chain output."""

    def _validate_inputs(self, inputs: Dict[str, Any]) -> None:
        """Check that all inputs are present."""
        missing_keys = set(self.input_keys).difference(inputs)
        if missing_keys:
            raise ValueError(f"Missing some input keys: {missing_keys}")

    def _validate_outputs(self, outputs: Dict[str, Any]) -> None:
        missing_keys = set(self.output_keys).difference(outputs)
        if missing_keys:
            raise ValueError(f"Missing some output keys: {missing_keys}")

    @abstractmethod
    def _call(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        """Execute the chain.

        This is a private method that is not user-facing. It is only called within
            `Chain.__call__`, which is the user-facing wrapper method that handles
            callbacks configuration and some input/output processing.

        Args:
            inputs: A dict of named inputs to the chain. Assumed to contain all inputs
                specified in `Chain.input_keys`, including any inputs added by memory.
            run_manager: The callbacks manager that contains the callback handlers for
                this run of the chain.

        Returns:
            A dict of named outputs. Should contain all outputs specified in
                `Chain.output_keys`.
        """

    async def _acall(
        self,
        inputs: Dict[str, Any],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        """Asynchronously execute the chain.

        This is a private method that is not user-facing. It is only called within
            `Chain.acall`, which is the user-facing wrapper method that handles
            callbacks configuration and some input/output processing.

        Args:
            inputs: A dict of named inputs to the chain. Assumed to contain all inputs
                specified in `Chain.input_keys`, including any inputs added by memory.
            run_manager: The callbacks manager that contains the callback handlers for
                this run of the chain.

        Returns:
            A dict of named outputs. Should contain all outputs specified in
                `Chain.output_keys`.
        """
        return await asyncio.get_running_loop().run_in_executor(
            None, self._call, inputs, run_manager
        )

    def __call__(
        self,
        inputs: Union[Dict[str, Any], Any],
        return_only_outputs: bool = False,
        callbacks: Callbacks = None,
        *,
        tags: Optional[List[str]] = None,
        metadata: Optional[Dict[str, Any]] = None,
        run_name: Optional[str] = None,
        include_run_info: bool = False,
    ) -> Dict[str, Any]:
        """Execute the chain.

        Args:
            inputs: Dictionary of inputs, or single input if chain expects
                only one param. Should contain all inputs specified in
                `Chain.input_keys` except for inputs that will be set by the chain's
                memory.
            return_only_outputs: Whether to return only outputs in the
                response. If True, only new keys generated by this chain will be
                returned. If False, both input keys and new keys generated by this
                chain will be returned. Defaults to False.
            callbacks: Callbacks to use for this chain run. These will be called in
                addition to callbacks passed to the chain during construction, but only
                these runtime callbacks will propagate to calls to other objects.
            tags: List of string tags to pass to all callbacks. These will be passed in
                addition to tags passed to the chain during construction, but only
                these runtime tags will propagate to calls to other objects.
            metadata: Optional metadata associated with the chain. Defaults to None
            include_run_info: Whether to include run info in the response. Defaults
                to False.

        Returns:
            A dict of named outputs. Should contain all outputs specified in
                `Chain.output_keys`.
        """
        inputs = self.prep_inputs(inputs)
        callback_manager = CallbackManager.configure(
            callbacks,
            self.callbacks,
            self.verbose,
            tags,
            self.tags,
            metadata,
            self.metadata,
        )
        new_arg_supported = inspect.signature(self._call).parameters.get("run_manager")
        run_manager = callback_manager.on_chain_start(
            dumpd(self),
            inputs,
            name=run_name,
        )
        try:
            outputs = (
                self._call(inputs, run_manager=run_manager)
                if new_arg_supported
                else self._call(inputs)
            )
        except BaseException as e:
            run_manager.on_chain_error(e)
            raise e
        run_manager.on_chain_end(outputs)
        final_outputs: Dict[str, Any] = self.prep_outputs(
            inputs, outputs, return_only_outputs
        )
        if include_run_info:
            final_outputs[RUN_KEY] = RunInfo(run_id=run_manager.run_id)
        return final_outputs

    async def acall(
        self,
        inputs: Union[Dict[str, Any], Any],
        return_only_outputs: bool = False,
        callbacks: Callbacks = None,
        *,
        tags: Optional[List[str]] = None,
        metadata: Optional[Dict[str, Any]] = None,
        run_name: Optional[str] = None,
        include_run_info: bool = False,
    ) -> Dict[str, Any]:
        """Asynchronously execute the chain.

        Args:
            inputs: Dictionary of inputs, or single input if chain expects
                only one param. Should contain all inputs specified in
                `Chain.input_keys` except for inputs that will be set by the chain's
                memory.
            return_only_outputs: Whether to return only outputs in the
                response. If True, only new keys generated by this chain will be
                returned. If False, both input keys and new keys generated by this
                chain will be returned. Defaults to False.
            callbacks: Callbacks to use for this chain run. These will be called in
                addition to callbacks passed to the chain during construction, but only
                these runtime callbacks will propagate to calls to other objects.
            tags: List of string tags to pass to all callbacks. These will be passed in
                addition to tags passed to the chain during construction, but only
                these runtime tags will propagate to calls to other objects.
            metadata: Optional metadata associated with the chain. Defaults to None
            include_run_info: Whether to include run info in the response. Defaults
                to False.

        Returns:
            A dict of named outputs. Should contain all outputs specified in
                `Chain.output_keys`.
        """
        inputs = self.prep_inputs(inputs)
        callback_manager = AsyncCallbackManager.configure(
            callbacks,
            self.callbacks,
            self.verbose,
            tags,
            self.tags,
            metadata,
            self.metadata,
        )
        new_arg_supported = inspect.signature(self._acall).parameters.get("run_manager")
        run_manager = await callback_manager.on_chain_start(
            dumpd(self),
            inputs,
            name=run_name,
        )
        try:
            outputs = (
                await self._acall(inputs, run_manager=run_manager)
                if new_arg_supported
                else await self._acall(inputs)
            )
        except BaseException as e:
            await run_manager.on_chain_error(e)
            raise e
        await run_manager.on_chain_end(outputs)
        final_outputs: Dict[str, Any] = self.prep_outputs(
            inputs, outputs, return_only_outputs
        )
        if include_run_info:
            final_outputs[RUN_KEY] = RunInfo(run_id=run_manager.run_id)
        return final_outputs

    def prep_outputs(
        self,
        inputs: Dict[str, str],
        outputs: Dict[str, str],
        return_only_outputs: bool = False,
    ) -> Dict[str, str]:
        """Validate and prepare chain outputs, and save info about this run to memory.

        Args:
            inputs: Dictionary of chain inputs, including any inputs added by chain
                memory.
            outputs: Dictionary of initial chain outputs.
            return_only_outputs: Whether to only return the chain outputs. If False,
                inputs are also added to the final outputs.

        Returns:
            A dict of the final chain outputs.
        """
        self._validate_outputs(outputs)
        if self.memory is not None:
            self.memory.save_context(inputs, outputs)
        if return_only_outputs:
            return outputs
        else:
            return {**inputs, **outputs}

    def prep_inputs(self, inputs: Union[Dict[str, Any], Any]) -> Dict[str, str]:
        """Validate and prepare chain inputs, including adding inputs from memory.

        Args:
            inputs: Dictionary of raw inputs, or single input if chain expects
                only one param. Should contain all inputs specified in
                `Chain.input_keys` except for inputs that will be set by the chain's
                memory.

        Returns:
            A dictionary of all inputs, including those added by the chain's memory.
        """
        if not isinstance(inputs, dict):
            _input_keys = set(self.input_keys)
            if self.memory is not None:
                # If there are multiple input keys, but some get set by memory so that
                # only one is not set, we can still figure out which key it is.
                _input_keys = _input_keys.difference(self.memory.memory_variables)
            if len(_input_keys) != 1:
                raise ValueError(
                    f"A single string input was passed in, but this chain expects "
                    f"multiple inputs ({_input_keys}). When a chain expects "
                    f"multiple inputs, please call it by passing in a dictionary, "
                    "eg `chain({'foo': 1, 'bar': 2})`"
                )
            inputs = {list(_input_keys)[0]: inputs}
        if self.memory is not None:
            external_context = self.memory.load_memory_variables(inputs)
            inputs = dict(inputs, **external_context)
        self._validate_inputs(inputs)
        return inputs

    @property
    def _run_output_key(self) -> str:
        if len(self.output_keys) != 1:
            raise ValueError(
                f"`run` not supported when there is not exactly "
                f"one output key. Got {self.output_keys}."
            )
        return self.output_keys[0]

    def run(
        self,
        *args: Any,
        callbacks: Callbacks = None,
        tags: Optional[List[str]] = None,
        metadata: Optional[Dict[str, Any]] = None,
        **kwargs: Any,
    ) -> Any:
        """Convenience method for executing chain.

        The main difference between this method and `Chain.__call__` is that this
        method expects inputs to be passed directly in as positional arguments or
        keyword arguments, whereas `Chain.__call__` expects a single input dictionary
        with all the inputs

        Args:
            *args: If the chain expects a single input, it can be passed in as the
                sole positional argument.
            callbacks: Callbacks to use for this chain run. These will be called in
                addition to callbacks passed to the chain during construction, but only
                these runtime callbacks will propagate to calls to other objects.
            tags: List of string tags to pass to all callbacks. These will be passed in
                addition to tags passed to the chain during construction, but only
                these runtime tags will propagate to calls to other objects.
            **kwargs: If the chain expects multiple inputs, they can be passed in
                directly as keyword arguments.

        Returns:
            The chain output.

        Example:
            .. code-block:: python

                # Suppose we have a single-input chain that takes a 'question' string:
                chain.run("What's the temperature in Boise, Idaho?")
                # -> "The temperature in Boise is..."

                # Suppose we have a multi-input chain that takes a 'question' string
                # and 'context' string:
                question = "What's the temperature in Boise, Idaho?"
                context = "Weather report for Boise, Idaho on 07/03/23..."
                chain.run(question=question, context=context)
                # -> "The temperature in Boise is..."
        """
        # Run at start to make sure this is possible/defined
        _output_key = self._run_output_key

        if args and not kwargs:
            if len(args) != 1:
                raise ValueError("`run` supports only one positional argument.")
            return self(args[0], callbacks=callbacks, tags=tags, metadata=metadata)[
                _output_key
            ]

        if kwargs and not args:
            return self(kwargs, callbacks=callbacks, tags=tags, metadata=metadata)[
                _output_key
            ]

        if not kwargs and not args:
            raise ValueError(
                "`run` supported with either positional arguments or keyword arguments,"
                " but none were provided."
            )
        else:
            raise ValueError(
                f"`run` supported with either positional arguments or keyword arguments"
                f" but not both. Got args: {args} and kwargs: {kwargs}."
            )

    async def arun(
        self,
        *args: Any,
        callbacks: Callbacks = None,
        tags: Optional[List[str]] = None,
        metadata: Optional[Dict[str, Any]] = None,
        **kwargs: Any,
    ) -> Any:
        """Convenience method for executing chain.

        The main difference between this method and `Chain.__call__` is that this
        method expects inputs to be passed directly in as positional arguments or
        keyword arguments, whereas `Chain.__call__` expects a single input dictionary
        with all the inputs


        Args:
            *args: If the chain expects a single input, it can be passed in as the
                sole positional argument.
            callbacks: Callbacks to use for this chain run. These will be called in
                addition to callbacks passed to the chain during construction, but only
                these runtime callbacks will propagate to calls to other objects.
            tags: List of string tags to pass to all callbacks. These will be passed in
                addition to tags passed to the chain during construction, but only
                these runtime tags will propagate to calls to other objects.
            **kwargs: If the chain expects multiple inputs, they can be passed in
                directly as keyword arguments.

        Returns:
            The chain output.

        Example:
            .. code-block:: python

                # Suppose we have a single-input chain that takes a 'question' string:
                await chain.arun("What's the temperature in Boise, Idaho?")
                # -> "The temperature in Boise is..."

                # Suppose we have a multi-input chain that takes a 'question' string
                # and 'context' string:
                question = "What's the temperature in Boise, Idaho?"
                context = "Weather report for Boise, Idaho on 07/03/23..."
                await chain.arun(question=question, context=context)
                # -> "The temperature in Boise is..."
        """
        if len(self.output_keys) != 1:
            raise ValueError(
                f"`run` not supported when there is not exactly "
                f"one output key. Got {self.output_keys}."
            )
        elif args and not kwargs:
            if len(args) != 1:
                raise ValueError("`run` supports only one positional argument.")
            return (
                await self.acall(
                    args[0], callbacks=callbacks, tags=tags, metadata=metadata
                )
            )[self.output_keys[0]]

        if kwargs and not args:
            return (
                await self.acall(
                    kwargs, callbacks=callbacks, tags=tags, metadata=metadata
                )
            )[self.output_keys[0]]

        raise ValueError(
            f"`run` supported with either positional arguments or keyword arguments"
            f" but not both. Got args: {args} and kwargs: {kwargs}."
        )

    def dict(self, **kwargs: Any) -> Dict:
        """Dictionary representation of chain.

        Expects `Chain._chain_type` property to be implemented and for memory to be
            null.

        Args:
            **kwargs: Keyword arguments passed to default `pydantic.BaseModel.dict`
                method.

        Returns:
            A dictionary representation of the chain.

        Example:
            .. code-block:: python

                chain.dict(exclude_unset=True)
                # -> {"_type": "foo", "verbose": False, ...}
        """
        _dict = super().dict(**kwargs)
        try:
            _dict["_type"] = self._chain_type
        except NotImplementedError:
            pass
        return _dict

    def save(self, file_path: Union[Path, str]) -> None:
        """Save the chain.

        Expects `Chain._chain_type` property to be implemented and for memory to be
            null.

        Args:
            file_path: Path to file to save the chain to.

        Example:
            .. code-block:: python

                chain.save(file_path="path/chain.yaml")
        """
        if self.memory is not None:
            raise ValueError("Saving of memory is not yet supported.")

        # Fetch dictionary to save
        chain_dict = self.dict()
        if "_type" not in chain_dict:
            raise NotImplementedError(f"Chain {self} does not support saving.")

        # Convert file to Path object.
        if isinstance(file_path, str):
            save_path = Path(file_path)
        else:
            save_path = file_path

        directory_path = save_path.parent
        directory_path.mkdir(parents=True, exist_ok=True)

        if save_path.suffix == ".json":
            with open(file_path, "w") as f:
                json.dump(chain_dict, f, indent=4)
        elif save_path.suffix == ".yaml":
            with open(file_path, "w") as f:
                yaml.dump(chain_dict, f, default_flow_style=False)
        else:
            raise ValueError(f"{save_path} must be json or yaml")

    def apply(
        self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
    ) -> List[Dict[str, str]]:
        """Call the chain on all inputs in the list."""
        return [self(inputs, callbacks=callbacks) for inputs in input_list]