Spaces:
Runtime error
Runtime error
File size: 7,310 Bytes
129cd69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
"""Callback Handler that prints to std out."""
from typing import Any, Dict, List
from langchain_core.outputs import LLMResult
from langchain.callbacks.base import BaseCallbackHandler
MODEL_COST_PER_1K_TOKENS = {
# GPT-4 input
"gpt-4": 0.03,
"gpt-4-0314": 0.03,
"gpt-4-0613": 0.03,
"gpt-4-32k": 0.06,
"gpt-4-32k-0314": 0.06,
"gpt-4-32k-0613": 0.06,
"gpt-4-vision-preview": 0.01,
"gpt-4-1106-preview": 0.01,
# GPT-4 output
"gpt-4-completion": 0.06,
"gpt-4-0314-completion": 0.06,
"gpt-4-0613-completion": 0.06,
"gpt-4-32k-completion": 0.12,
"gpt-4-32k-0314-completion": 0.12,
"gpt-4-32k-0613-completion": 0.12,
"gpt-4-vision-preview-completion": 0.03,
"gpt-4-1106-preview-completion": 0.03,
# GPT-3.5 input
"gpt-3.5-turbo": 0.0015,
"gpt-3.5-turbo-0301": 0.0015,
"gpt-3.5-turbo-0613": 0.0015,
"gpt-3.5-turbo-1106": 0.001,
"gpt-3.5-turbo-instruct": 0.0015,
"gpt-3.5-turbo-16k": 0.003,
"gpt-3.5-turbo-16k-0613": 0.003,
# GPT-3.5 output
"gpt-3.5-turbo-completion": 0.002,
"gpt-3.5-turbo-0301-completion": 0.002,
"gpt-3.5-turbo-0613-completion": 0.002,
"gpt-3.5-turbo-1106-completion": 0.002,
"gpt-3.5-turbo-instruct-completion": 0.002,
"gpt-3.5-turbo-16k-completion": 0.004,
"gpt-3.5-turbo-16k-0613-completion": 0.004,
# Azure GPT-35 input
"gpt-35-turbo": 0.0015, # Azure OpenAI version of ChatGPT
"gpt-35-turbo-0301": 0.0015, # Azure OpenAI version of ChatGPT
"gpt-35-turbo-0613": 0.0015,
"gpt-35-turbo-instruct": 0.0015,
"gpt-35-turbo-16k": 0.003,
"gpt-35-turbo-16k-0613": 0.003,
# Azure GPT-35 output
"gpt-35-turbo-completion": 0.002, # Azure OpenAI version of ChatGPT
"gpt-35-turbo-0301-completion": 0.002, # Azure OpenAI version of ChatGPT
"gpt-35-turbo-0613-completion": 0.002,
"gpt-35-turbo-instruct-completion": 0.002,
"gpt-35-turbo-16k-completion": 0.004,
"gpt-35-turbo-16k-0613-completion": 0.004,
# Others
"text-ada-001": 0.0004,
"ada": 0.0004,
"text-babbage-001": 0.0005,
"babbage": 0.0005,
"text-curie-001": 0.002,
"curie": 0.002,
"text-davinci-003": 0.02,
"text-davinci-002": 0.02,
"code-davinci-002": 0.02,
# Fine Tuned input
"babbage-002-finetuned": 0.0016,
"davinci-002-finetuned": 0.012,
"gpt-3.5-turbo-0613-finetuned": 0.012,
# Fine Tuned output
"babbage-002-finetuned-completion": 0.0016,
"davinci-002-finetuned-completion": 0.012,
"gpt-3.5-turbo-0613-finetuned-completion": 0.016,
# Azure Fine Tuned input
"babbage-002-azure-finetuned": 0.0004,
"davinci-002-azure-finetuned": 0.002,
"gpt-35-turbo-0613-azure-finetuned": 0.0015,
# Azure Fine Tuned output
"babbage-002-azure-finetuned-completion": 0.0004,
"davinci-002-azure-finetuned-completion": 0.002,
"gpt-35-turbo-0613-azure-finetuned-completion": 0.002,
# Legacy fine-tuned models
"ada-finetuned-legacy": 0.0016,
"babbage-finetuned-legacy": 0.0024,
"curie-finetuned-legacy": 0.012,
"davinci-finetuned-legacy": 0.12,
}
def standardize_model_name(
model_name: str,
is_completion: bool = False,
) -> str:
"""
Standardize the model name to a format that can be used in the OpenAI API.
Args:
model_name: Model name to standardize.
is_completion: Whether the model is used for completion or not.
Defaults to False.
Returns:
Standardized model name.
"""
model_name = model_name.lower()
if ".ft-" in model_name:
model_name = model_name.split(".ft-")[0] + "-azure-finetuned"
if ":ft-" in model_name:
model_name = model_name.split(":")[0] + "-finetuned-legacy"
if "ft:" in model_name:
model_name = model_name.split(":")[1] + "-finetuned"
if is_completion and (
model_name.startswith("gpt-4")
or model_name.startswith("gpt-3.5")
or model_name.startswith("gpt-35")
or ("finetuned" in model_name and "legacy" not in model_name)
):
return model_name + "-completion"
else:
return model_name
def get_openai_token_cost_for_model(
model_name: str, num_tokens: int, is_completion: bool = False
) -> float:
"""
Get the cost in USD for a given model and number of tokens.
Args:
model_name: Name of the model
num_tokens: Number of tokens.
is_completion: Whether the model is used for completion or not.
Defaults to False.
Returns:
Cost in USD.
"""
model_name = standardize_model_name(model_name, is_completion=is_completion)
if model_name not in MODEL_COST_PER_1K_TOKENS:
raise ValueError(
f"Unknown model: {model_name}. Please provide a valid OpenAI model name."
"Known models are: " + ", ".join(MODEL_COST_PER_1K_TOKENS.keys())
)
return MODEL_COST_PER_1K_TOKENS[model_name] * (num_tokens / 1000)
class OpenAICallbackHandler(BaseCallbackHandler):
"""Callback Handler that tracks OpenAI info."""
total_tokens: int = 0
prompt_tokens: int = 0
completion_tokens: int = 0
successful_requests: int = 0
total_cost: float = 0.0
def __repr__(self) -> str:
return (
f"Tokens Used: {self.total_tokens}\n"
f"\tPrompt Tokens: {self.prompt_tokens}\n"
f"\tCompletion Tokens: {self.completion_tokens}\n"
f"Successful Requests: {self.successful_requests}\n"
f"Total Cost (USD): ${self.total_cost}"
)
@property
def always_verbose(self) -> bool:
"""Whether to call verbose callbacks even if verbose is False."""
return True
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Print out the prompts."""
pass
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Print out the token."""
pass
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Collect token usage."""
if response.llm_output is None:
return None
self.successful_requests += 1
if "token_usage" not in response.llm_output:
return None
token_usage = response.llm_output["token_usage"]
completion_tokens = token_usage.get("completion_tokens", 0)
prompt_tokens = token_usage.get("prompt_tokens", 0)
model_name = standardize_model_name(response.llm_output.get("model_name", ""))
if model_name in MODEL_COST_PER_1K_TOKENS:
completion_cost = get_openai_token_cost_for_model(
model_name, completion_tokens, is_completion=True
)
prompt_cost = get_openai_token_cost_for_model(model_name, prompt_tokens)
self.total_cost += prompt_cost + completion_cost
self.total_tokens += token_usage.get("total_tokens", 0)
self.prompt_tokens += prompt_tokens
self.completion_tokens += completion_tokens
def __copy__(self) -> "OpenAICallbackHandler":
"""Return a copy of the callback handler."""
return self
def __deepcopy__(self, memo: Any) -> "OpenAICallbackHandler":
"""Return a deep copy of the callback handler."""
return self
|