File size: 24,141 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import os
import random
import string
import tempfile
import traceback
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, List, Optional, Union

from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.outputs import LLMResult

from langchain.callbacks.base import BaseCallbackHandler
from langchain.callbacks.utils import (
    BaseMetadataCallbackHandler,
    flatten_dict,
    hash_string,
    import_pandas,
    import_spacy,
    import_textstat,
)
from langchain.utils import get_from_dict_or_env


def import_mlflow() -> Any:
    """Import the mlflow python package and raise an error if it is not installed."""
    try:
        import mlflow
    except ImportError:
        raise ImportError(
            "To use the mlflow callback manager you need to have the `mlflow` python "
            "package installed. Please install it with `pip install mlflow>=2.3.0`"
        )
    return mlflow


def analyze_text(
    text: str,
    nlp: Any = None,
) -> dict:
    """Analyze text using textstat and spacy.

    Parameters:
        text (str): The text to analyze.
        nlp (spacy.lang): The spacy language model to use for visualization.

    Returns:
        (dict): A dictionary containing the complexity metrics and visualization
            files serialized to  HTML string.
    """
    resp: Dict[str, Any] = {}
    textstat = import_textstat()
    spacy = import_spacy()
    text_complexity_metrics = {
        "flesch_reading_ease": textstat.flesch_reading_ease(text),
        "flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
        "smog_index": textstat.smog_index(text),
        "coleman_liau_index": textstat.coleman_liau_index(text),
        "automated_readability_index": textstat.automated_readability_index(text),
        "dale_chall_readability_score": textstat.dale_chall_readability_score(text),
        "difficult_words": textstat.difficult_words(text),
        "linsear_write_formula": textstat.linsear_write_formula(text),
        "gunning_fog": textstat.gunning_fog(text),
        # "text_standard": textstat.text_standard(text),
        "fernandez_huerta": textstat.fernandez_huerta(text),
        "szigriszt_pazos": textstat.szigriszt_pazos(text),
        "gutierrez_polini": textstat.gutierrez_polini(text),
        "crawford": textstat.crawford(text),
        "gulpease_index": textstat.gulpease_index(text),
        "osman": textstat.osman(text),
    }
    resp.update({"text_complexity_metrics": text_complexity_metrics})
    resp.update(text_complexity_metrics)

    if nlp is not None:
        doc = nlp(text)

        dep_out = spacy.displacy.render(  # type: ignore
            doc, style="dep", jupyter=False, page=True
        )

        ent_out = spacy.displacy.render(  # type: ignore
            doc, style="ent", jupyter=False, page=True
        )

        text_visualizations = {
            "dependency_tree": dep_out,
            "entities": ent_out,
        }

        resp.update(text_visualizations)

    return resp


def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any:
    """Construct an html element from a prompt and a generation.

    Parameters:
        prompt (str): The prompt.
        generation (str): The generation.

    Returns:
        (str): The html string."""
    formatted_prompt = prompt.replace("\n", "<br>")
    formatted_generation = generation.replace("\n", "<br>")

    return f"""
    <p style="color:black;">{formatted_prompt}:</p>
    <blockquote>
      <p style="color:green;">
        {formatted_generation}
      </p>
    </blockquote>
    """


class MlflowLogger:
    """Callback Handler that logs metrics and artifacts to mlflow server.

    Parameters:
        name (str): Name of the run.
        experiment (str): Name of the experiment.
        tags (dict): Tags to be attached for the run.
        tracking_uri (str): MLflow tracking server uri.

    This handler implements the helper functions to initialize,
    log metrics and artifacts to the mlflow server.
    """

    def __init__(self, **kwargs: Any):
        self.mlflow = import_mlflow()
        if "DATABRICKS_RUNTIME_VERSION" in os.environ:
            self.mlflow.set_tracking_uri("databricks")
            self.mlf_expid = self.mlflow.tracking.fluent._get_experiment_id()
            self.mlf_exp = self.mlflow.get_experiment(self.mlf_expid)
        else:
            tracking_uri = get_from_dict_or_env(
                kwargs, "tracking_uri", "MLFLOW_TRACKING_URI", ""
            )
            self.mlflow.set_tracking_uri(tracking_uri)

            # User can set other env variables described here
            # > https://www.mlflow.org/docs/latest/tracking.html#logging-to-a-tracking-server

            experiment_name = get_from_dict_or_env(
                kwargs, "experiment_name", "MLFLOW_EXPERIMENT_NAME"
            )
            self.mlf_exp = self.mlflow.get_experiment_by_name(experiment_name)
            if self.mlf_exp is not None:
                self.mlf_expid = self.mlf_exp.experiment_id
            else:
                self.mlf_expid = self.mlflow.create_experiment(experiment_name)

        self.start_run(kwargs["run_name"], kwargs["run_tags"])

    def start_run(self, name: str, tags: Dict[str, str]) -> None:
        """To start a new run, auto generates the random suffix for name"""
        if name.endswith("-%"):
            rname = "".join(random.choices(string.ascii_uppercase + string.digits, k=7))
            name = name.replace("%", rname)
        self.run = self.mlflow.MlflowClient().create_run(
            self.mlf_expid, run_name=name, tags=tags
        )

    def finish_run(self) -> None:
        """To finish the run."""
        with self.mlflow.start_run(
            run_id=self.run.info.run_id, experiment_id=self.mlf_expid
        ):
            self.mlflow.end_run()

    def metric(self, key: str, value: float) -> None:
        """To log metric to mlflow server."""
        with self.mlflow.start_run(
            run_id=self.run.info.run_id, experiment_id=self.mlf_expid
        ):
            self.mlflow.log_metric(key, value)

    def metrics(
        self, data: Union[Dict[str, float], Dict[str, int]], step: Optional[int] = 0
    ) -> None:
        """To log all metrics in the input dict."""
        with self.mlflow.start_run(
            run_id=self.run.info.run_id, experiment_id=self.mlf_expid
        ):
            self.mlflow.log_metrics(data)

    def jsonf(self, data: Dict[str, Any], filename: str) -> None:
        """To log the input data as json file artifact."""
        with self.mlflow.start_run(
            run_id=self.run.info.run_id, experiment_id=self.mlf_expid
        ):
            self.mlflow.log_dict(data, f"{filename}.json")

    def table(self, name: str, dataframe) -> None:  # type: ignore
        """To log the input pandas dataframe as a html table"""
        self.html(dataframe.to_html(), f"table_{name}")

    def html(self, html: str, filename: str) -> None:
        """To log the input html string as html file artifact."""
        with self.mlflow.start_run(
            run_id=self.run.info.run_id, experiment_id=self.mlf_expid
        ):
            self.mlflow.log_text(html, f"{filename}.html")

    def text(self, text: str, filename: str) -> None:
        """To log the input text as text file artifact."""
        with self.mlflow.start_run(
            run_id=self.run.info.run_id, experiment_id=self.mlf_expid
        ):
            self.mlflow.log_text(text, f"{filename}.txt")

    def artifact(self, path: str) -> None:
        """To upload the file from given path as artifact."""
        with self.mlflow.start_run(
            run_id=self.run.info.run_id, experiment_id=self.mlf_expid
        ):
            self.mlflow.log_artifact(path)

    def langchain_artifact(self, chain: Any) -> None:
        with self.mlflow.start_run(
            run_id=self.run.info.run_id, experiment_id=self.mlf_expid
        ):
            self.mlflow.langchain.log_model(chain, "langchain-model")


class MlflowCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
    """Callback Handler that logs metrics and artifacts to mlflow server.

    Parameters:
        name (str): Name of the run.
        experiment (str): Name of the experiment.
        tags (dict): Tags to be attached for the run.
        tracking_uri (str): MLflow tracking server uri.

    This handler will utilize the associated callback method called and formats
    the input of each callback function with metadata regarding the state of LLM run,
    and adds the response to the list of records for both the {method}_records and
    action. It then logs the response to mlflow server.
    """

    def __init__(
        self,
        name: Optional[str] = "langchainrun-%",
        experiment: Optional[str] = "langchain",
        tags: Optional[Dict] = None,
        tracking_uri: Optional[str] = None,
    ) -> None:
        """Initialize callback handler."""
        import_pandas()
        import_textstat()
        import_mlflow()
        spacy = import_spacy()
        super().__init__()

        self.name = name
        self.experiment = experiment
        self.tags = tags or {}
        self.tracking_uri = tracking_uri

        self.temp_dir = tempfile.TemporaryDirectory()

        self.mlflg = MlflowLogger(
            tracking_uri=self.tracking_uri,
            experiment_name=self.experiment,
            run_name=self.name,
            run_tags=self.tags,
        )

        self.action_records: list = []
        self.nlp = spacy.load("en_core_web_sm")

        self.metrics = {
            "step": 0,
            "starts": 0,
            "ends": 0,
            "errors": 0,
            "text_ctr": 0,
            "chain_starts": 0,
            "chain_ends": 0,
            "llm_starts": 0,
            "llm_ends": 0,
            "llm_streams": 0,
            "tool_starts": 0,
            "tool_ends": 0,
            "agent_ends": 0,
        }

        self.records: Dict[str, Any] = {
            "on_llm_start_records": [],
            "on_llm_token_records": [],
            "on_llm_end_records": [],
            "on_chain_start_records": [],
            "on_chain_end_records": [],
            "on_tool_start_records": [],
            "on_tool_end_records": [],
            "on_text_records": [],
            "on_agent_finish_records": [],
            "on_agent_action_records": [],
            "action_records": [],
        }

    def _reset(self) -> None:
        for k, v in self.metrics.items():
            self.metrics[k] = 0
        for k, v in self.records.items():
            self.records[k] = []

    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Run when LLM starts."""
        self.metrics["step"] += 1
        self.metrics["llm_starts"] += 1
        self.metrics["starts"] += 1

        llm_starts = self.metrics["llm_starts"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_llm_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.metrics)

        self.mlflg.metrics(self.metrics, step=self.metrics["step"])

        for idx, prompt in enumerate(prompts):
            prompt_resp = deepcopy(resp)
            prompt_resp["prompt"] = prompt
            self.records["on_llm_start_records"].append(prompt_resp)
            self.records["action_records"].append(prompt_resp)
            self.mlflg.jsonf(prompt_resp, f"llm_start_{llm_starts}_prompt_{idx}")

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Run when LLM generates a new token."""
        self.metrics["step"] += 1
        self.metrics["llm_streams"] += 1

        llm_streams = self.metrics["llm_streams"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_llm_new_token", "token": token})
        resp.update(self.metrics)

        self.mlflg.metrics(self.metrics, step=self.metrics["step"])

        self.records["on_llm_token_records"].append(resp)
        self.records["action_records"].append(resp)
        self.mlflg.jsonf(resp, f"llm_new_tokens_{llm_streams}")

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Run when LLM ends running."""
        self.metrics["step"] += 1
        self.metrics["llm_ends"] += 1
        self.metrics["ends"] += 1

        llm_ends = self.metrics["llm_ends"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_llm_end"})
        resp.update(flatten_dict(response.llm_output or {}))
        resp.update(self.metrics)

        self.mlflg.metrics(self.metrics, step=self.metrics["step"])

        for generations in response.generations:
            for idx, generation in enumerate(generations):
                generation_resp = deepcopy(resp)
                generation_resp.update(flatten_dict(generation.dict()))
                generation_resp.update(
                    analyze_text(
                        generation.text,
                        nlp=self.nlp,
                    )
                )
                complexity_metrics: Dict[str, float] = generation_resp.pop(
                    "text_complexity_metrics"
                )  # type: ignore  # noqa: E501
                self.mlflg.metrics(
                    complexity_metrics,
                    step=self.metrics["step"],
                )
                self.records["on_llm_end_records"].append(generation_resp)
                self.records["action_records"].append(generation_resp)
                self.mlflg.jsonf(resp, f"llm_end_{llm_ends}_generation_{idx}")
                dependency_tree = generation_resp["dependency_tree"]
                entities = generation_resp["entities"]
                self.mlflg.html(dependency_tree, "dep-" + hash_string(generation.text))
                self.mlflg.html(entities, "ent-" + hash_string(generation.text))

    def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when LLM errors."""
        self.metrics["step"] += 1
        self.metrics["errors"] += 1

    def on_chain_start(
        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
    ) -> None:
        """Run when chain starts running."""
        self.metrics["step"] += 1
        self.metrics["chain_starts"] += 1
        self.metrics["starts"] += 1

        chain_starts = self.metrics["chain_starts"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_chain_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.metrics)

        self.mlflg.metrics(self.metrics, step=self.metrics["step"])

        chain_input = ",".join([f"{k}={v}" for k, v in inputs.items()])
        input_resp = deepcopy(resp)
        input_resp["inputs"] = chain_input
        self.records["on_chain_start_records"].append(input_resp)
        self.records["action_records"].append(input_resp)
        self.mlflg.jsonf(input_resp, f"chain_start_{chain_starts}")

    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
        """Run when chain ends running."""
        self.metrics["step"] += 1
        self.metrics["chain_ends"] += 1
        self.metrics["ends"] += 1

        chain_ends = self.metrics["chain_ends"]

        resp: Dict[str, Any] = {}
        chain_output = ",".join([f"{k}={v}" for k, v in outputs.items()])
        resp.update({"action": "on_chain_end", "outputs": chain_output})
        resp.update(self.metrics)

        self.mlflg.metrics(self.metrics, step=self.metrics["step"])

        self.records["on_chain_end_records"].append(resp)
        self.records["action_records"].append(resp)
        self.mlflg.jsonf(resp, f"chain_end_{chain_ends}")

    def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when chain errors."""
        self.metrics["step"] += 1
        self.metrics["errors"] += 1

    def on_tool_start(
        self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
    ) -> None:
        """Run when tool starts running."""
        self.metrics["step"] += 1
        self.metrics["tool_starts"] += 1
        self.metrics["starts"] += 1

        tool_starts = self.metrics["tool_starts"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_tool_start", "input_str": input_str})
        resp.update(flatten_dict(serialized))
        resp.update(self.metrics)

        self.mlflg.metrics(self.metrics, step=self.metrics["step"])

        self.records["on_tool_start_records"].append(resp)
        self.records["action_records"].append(resp)
        self.mlflg.jsonf(resp, f"tool_start_{tool_starts}")

    def on_tool_end(self, output: str, **kwargs: Any) -> None:
        """Run when tool ends running."""
        self.metrics["step"] += 1
        self.metrics["tool_ends"] += 1
        self.metrics["ends"] += 1

        tool_ends = self.metrics["tool_ends"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_tool_end", "output": output})
        resp.update(self.metrics)

        self.mlflg.metrics(self.metrics, step=self.metrics["step"])

        self.records["on_tool_end_records"].append(resp)
        self.records["action_records"].append(resp)
        self.mlflg.jsonf(resp, f"tool_end_{tool_ends}")

    def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when tool errors."""
        self.metrics["step"] += 1
        self.metrics["errors"] += 1

    def on_text(self, text: str, **kwargs: Any) -> None:
        """
        Run when agent is ending.
        """
        self.metrics["step"] += 1
        self.metrics["text_ctr"] += 1

        text_ctr = self.metrics["text_ctr"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_text", "text": text})
        resp.update(self.metrics)

        self.mlflg.metrics(self.metrics, step=self.metrics["step"])

        self.records["on_text_records"].append(resp)
        self.records["action_records"].append(resp)
        self.mlflg.jsonf(resp, f"on_text_{text_ctr}")

    def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
        """Run when agent ends running."""
        self.metrics["step"] += 1
        self.metrics["agent_ends"] += 1
        self.metrics["ends"] += 1

        agent_ends = self.metrics["agent_ends"]
        resp: Dict[str, Any] = {}
        resp.update(
            {
                "action": "on_agent_finish",
                "output": finish.return_values["output"],
                "log": finish.log,
            }
        )
        resp.update(self.metrics)

        self.mlflg.metrics(self.metrics, step=self.metrics["step"])

        self.records["on_agent_finish_records"].append(resp)
        self.records["action_records"].append(resp)
        self.mlflg.jsonf(resp, f"agent_finish_{agent_ends}")

    def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
        """Run on agent action."""
        self.metrics["step"] += 1
        self.metrics["tool_starts"] += 1
        self.metrics["starts"] += 1

        tool_starts = self.metrics["tool_starts"]
        resp: Dict[str, Any] = {}
        resp.update(
            {
                "action": "on_agent_action",
                "tool": action.tool,
                "tool_input": action.tool_input,
                "log": action.log,
            }
        )
        resp.update(self.metrics)
        self.mlflg.metrics(self.metrics, step=self.metrics["step"])
        self.records["on_agent_action_records"].append(resp)
        self.records["action_records"].append(resp)
        self.mlflg.jsonf(resp, f"agent_action_{tool_starts}")

    def _create_session_analysis_df(self) -> Any:
        """Create a dataframe with all the information from the session."""
        pd = import_pandas()
        on_llm_start_records_df = pd.DataFrame(self.records["on_llm_start_records"])
        on_llm_end_records_df = pd.DataFrame(self.records["on_llm_end_records"])

        llm_input_columns = ["step", "prompt"]
        if "name" in on_llm_start_records_df.columns:
            llm_input_columns.append("name")
        elif "id" in on_llm_start_records_df.columns:
            # id is llm class's full import path. For example:
            # ["langchain", "llms", "openai", "AzureOpenAI"]
            on_llm_start_records_df["name"] = on_llm_start_records_df["id"].apply(
                lambda id_: id_[-1]
            )
            llm_input_columns.append("name")
        llm_input_prompts_df = (
            on_llm_start_records_df[llm_input_columns]
            .dropna(axis=1)
            .rename({"step": "prompt_step"}, axis=1)
        )
        complexity_metrics_columns = []
        visualizations_columns = []

        complexity_metrics_columns = [
            "flesch_reading_ease",
            "flesch_kincaid_grade",
            "smog_index",
            "coleman_liau_index",
            "automated_readability_index",
            "dale_chall_readability_score",
            "difficult_words",
            "linsear_write_formula",
            "gunning_fog",
            # "text_standard",
            "fernandez_huerta",
            "szigriszt_pazos",
            "gutierrez_polini",
            "crawford",
            "gulpease_index",
            "osman",
        ]

        visualizations_columns = ["dependency_tree", "entities"]

        llm_outputs_df = (
            on_llm_end_records_df[
                [
                    "step",
                    "text",
                    "token_usage_total_tokens",
                    "token_usage_prompt_tokens",
                    "token_usage_completion_tokens",
                ]
                + complexity_metrics_columns
                + visualizations_columns
            ]
            .dropna(axis=1)
            .rename({"step": "output_step", "text": "output"}, axis=1)
        )
        session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1)
        session_analysis_df["chat_html"] = session_analysis_df[
            ["prompt", "output"]
        ].apply(
            lambda row: construct_html_from_prompt_and_generation(
                row["prompt"], row["output"]
            ),
            axis=1,
        )
        return session_analysis_df

    def flush_tracker(self, langchain_asset: Any = None, finish: bool = False) -> None:
        pd = import_pandas()
        self.mlflg.table("action_records", pd.DataFrame(self.records["action_records"]))
        session_analysis_df = self._create_session_analysis_df()
        chat_html = session_analysis_df.pop("chat_html")
        chat_html = chat_html.replace("\n", "", regex=True)
        self.mlflg.table("session_analysis", pd.DataFrame(session_analysis_df))
        self.mlflg.html("".join(chat_html.tolist()), "chat_html")

        if langchain_asset:
            # To avoid circular import error
            # mlflow only supports LLMChain asset
            if "langchain.chains.llm.LLMChain" in str(type(langchain_asset)):
                self.mlflg.langchain_artifact(langchain_asset)
            else:
                langchain_asset_path = str(Path(self.temp_dir.name, "model.json"))
                try:
                    langchain_asset.save(langchain_asset_path)
                    self.mlflg.artifact(langchain_asset_path)
                except ValueError:
                    try:
                        langchain_asset.save_agent(langchain_asset_path)
                        self.mlflg.artifact(langchain_asset_path)
                    except AttributeError:
                        print("Could not save model.")
                        traceback.print_exc()
                        pass
                    except NotImplementedError:
                        print("Could not save model.")
                        traceback.print_exc()
                        pass
                except NotImplementedError:
                    print("Could not save model.")
                    traceback.print_exc()
                    pass
        if finish:
            self.mlflg.finish_run()
            self._reset()