File size: 23,163 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import tempfile
from copy import deepcopy
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Sequence

from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.outputs import Generation, LLMResult

import langchain
from langchain.callbacks.base import BaseCallbackHandler
from langchain.callbacks.utils import (
    BaseMetadataCallbackHandler,
    flatten_dict,
    import_pandas,
    import_spacy,
    import_textstat,
)

LANGCHAIN_MODEL_NAME = "langchain-model"


def import_comet_ml() -> Any:
    """Import comet_ml and raise an error if it is not installed."""
    try:
        import comet_ml  # noqa: F401
    except ImportError:
        raise ImportError(
            "To use the comet_ml callback manager you need to have the "
            "`comet_ml` python package installed. Please install it with"
            " `pip install comet_ml`"
        )
    return comet_ml


def _get_experiment(
    workspace: Optional[str] = None, project_name: Optional[str] = None
) -> Any:
    comet_ml = import_comet_ml()

    experiment = comet_ml.Experiment(  # type: ignore
        workspace=workspace,
        project_name=project_name,
    )

    return experiment


def _fetch_text_complexity_metrics(text: str) -> dict:
    textstat = import_textstat()
    text_complexity_metrics = {
        "flesch_reading_ease": textstat.flesch_reading_ease(text),
        "flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
        "smog_index": textstat.smog_index(text),
        "coleman_liau_index": textstat.coleman_liau_index(text),
        "automated_readability_index": textstat.automated_readability_index(text),
        "dale_chall_readability_score": textstat.dale_chall_readability_score(text),
        "difficult_words": textstat.difficult_words(text),
        "linsear_write_formula": textstat.linsear_write_formula(text),
        "gunning_fog": textstat.gunning_fog(text),
        "text_standard": textstat.text_standard(text),
        "fernandez_huerta": textstat.fernandez_huerta(text),
        "szigriszt_pazos": textstat.szigriszt_pazos(text),
        "gutierrez_polini": textstat.gutierrez_polini(text),
        "crawford": textstat.crawford(text),
        "gulpease_index": textstat.gulpease_index(text),
        "osman": textstat.osman(text),
    }
    return text_complexity_metrics


def _summarize_metrics_for_generated_outputs(metrics: Sequence) -> dict:
    pd = import_pandas()
    metrics_df = pd.DataFrame(metrics)
    metrics_summary = metrics_df.describe()

    return metrics_summary.to_dict()


class CometCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
    """Callback Handler that logs to Comet.

    Parameters:
        job_type (str): The type of comet_ml task such as "inference",
            "testing" or "qc"
        project_name (str): The comet_ml project name
        tags (list): Tags to add to the task
        task_name (str): Name of the comet_ml task
        visualize (bool): Whether to visualize the run.
        complexity_metrics (bool): Whether to log complexity metrics
        stream_logs (bool): Whether to stream callback actions to Comet

    This handler will utilize the associated callback method and formats
    the input of each callback function with metadata regarding the state of LLM run,
    and adds the response to the list of records for both the {method}_records and
    action. It then logs the response to Comet.
    """

    def __init__(
        self,
        task_type: Optional[str] = "inference",
        workspace: Optional[str] = None,
        project_name: Optional[str] = None,
        tags: Optional[Sequence] = None,
        name: Optional[str] = None,
        visualizations: Optional[List[str]] = None,
        complexity_metrics: bool = False,
        custom_metrics: Optional[Callable] = None,
        stream_logs: bool = True,
    ) -> None:
        """Initialize callback handler."""

        self.comet_ml = import_comet_ml()
        super().__init__()

        self.task_type = task_type
        self.workspace = workspace
        self.project_name = project_name
        self.tags = tags
        self.visualizations = visualizations
        self.complexity_metrics = complexity_metrics
        self.custom_metrics = custom_metrics
        self.stream_logs = stream_logs
        self.temp_dir = tempfile.TemporaryDirectory()

        self.experiment = _get_experiment(workspace, project_name)
        self.experiment.log_other("Created from", "langchain")
        if tags:
            self.experiment.add_tags(tags)
        self.name = name
        if self.name:
            self.experiment.set_name(self.name)

        warning = (
            "The comet_ml callback is currently in beta and is subject to change "
            "based on updates to `langchain`. Please report any issues to "
            "https://github.com/comet-ml/issue-tracking/issues with the tag "
            "`langchain`."
        )
        self.comet_ml.LOGGER.warning(warning)

        self.callback_columns: list = []
        self.action_records: list = []
        self.complexity_metrics = complexity_metrics
        if self.visualizations:
            spacy = import_spacy()
            self.nlp = spacy.load("en_core_web_sm")
        else:
            self.nlp = None

    def _init_resp(self) -> Dict:
        return {k: None for k in self.callback_columns}

    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Run when LLM starts."""
        self.step += 1
        self.llm_starts += 1
        self.starts += 1

        metadata = self._init_resp()
        metadata.update({"action": "on_llm_start"})
        metadata.update(flatten_dict(serialized))
        metadata.update(self.get_custom_callback_meta())

        for prompt in prompts:
            prompt_resp = deepcopy(metadata)
            prompt_resp["prompts"] = prompt
            self.on_llm_start_records.append(prompt_resp)
            self.action_records.append(prompt_resp)

            if self.stream_logs:
                self._log_stream(prompt, metadata, self.step)

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Run when LLM generates a new token."""
        self.step += 1
        self.llm_streams += 1

        resp = self._init_resp()
        resp.update({"action": "on_llm_new_token", "token": token})
        resp.update(self.get_custom_callback_meta())

        self.action_records.append(resp)

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Run when LLM ends running."""
        self.step += 1
        self.llm_ends += 1
        self.ends += 1

        metadata = self._init_resp()
        metadata.update({"action": "on_llm_end"})
        metadata.update(flatten_dict(response.llm_output or {}))
        metadata.update(self.get_custom_callback_meta())

        output_complexity_metrics = []
        output_custom_metrics = []

        for prompt_idx, generations in enumerate(response.generations):
            for gen_idx, generation in enumerate(generations):
                text = generation.text

                generation_resp = deepcopy(metadata)
                generation_resp.update(flatten_dict(generation.dict()))

                complexity_metrics = self._get_complexity_metrics(text)
                if complexity_metrics:
                    output_complexity_metrics.append(complexity_metrics)
                    generation_resp.update(complexity_metrics)

                custom_metrics = self._get_custom_metrics(
                    generation, prompt_idx, gen_idx
                )
                if custom_metrics:
                    output_custom_metrics.append(custom_metrics)
                    generation_resp.update(custom_metrics)

                if self.stream_logs:
                    self._log_stream(text, metadata, self.step)

                self.action_records.append(generation_resp)
                self.on_llm_end_records.append(generation_resp)

        self._log_text_metrics(output_complexity_metrics, step=self.step)
        self._log_text_metrics(output_custom_metrics, step=self.step)

    def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when LLM errors."""
        self.step += 1
        self.errors += 1

    def on_chain_start(
        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
    ) -> None:
        """Run when chain starts running."""
        self.step += 1
        self.chain_starts += 1
        self.starts += 1

        resp = self._init_resp()
        resp.update({"action": "on_chain_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.get_custom_callback_meta())

        for chain_input_key, chain_input_val in inputs.items():
            if isinstance(chain_input_val, str):
                input_resp = deepcopy(resp)
                if self.stream_logs:
                    self._log_stream(chain_input_val, resp, self.step)
                input_resp.update({chain_input_key: chain_input_val})
                self.action_records.append(input_resp)

            else:
                self.comet_ml.LOGGER.warning(
                    f"Unexpected data format provided! "
                    f"Input Value for {chain_input_key} will not be logged"
                )

    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
        """Run when chain ends running."""
        self.step += 1
        self.chain_ends += 1
        self.ends += 1

        resp = self._init_resp()
        resp.update({"action": "on_chain_end"})
        resp.update(self.get_custom_callback_meta())

        for chain_output_key, chain_output_val in outputs.items():
            if isinstance(chain_output_val, str):
                output_resp = deepcopy(resp)
                if self.stream_logs:
                    self._log_stream(chain_output_val, resp, self.step)
                output_resp.update({chain_output_key: chain_output_val})
                self.action_records.append(output_resp)
            else:
                self.comet_ml.LOGGER.warning(
                    f"Unexpected data format provided! "
                    f"Output Value for {chain_output_key} will not be logged"
                )

    def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when chain errors."""
        self.step += 1
        self.errors += 1

    def on_tool_start(
        self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
    ) -> None:
        """Run when tool starts running."""
        self.step += 1
        self.tool_starts += 1
        self.starts += 1

        resp = self._init_resp()
        resp.update({"action": "on_tool_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.get_custom_callback_meta())
        if self.stream_logs:
            self._log_stream(input_str, resp, self.step)

        resp.update({"input_str": input_str})
        self.action_records.append(resp)

    def on_tool_end(self, output: str, **kwargs: Any) -> None:
        """Run when tool ends running."""
        self.step += 1
        self.tool_ends += 1
        self.ends += 1

        resp = self._init_resp()
        resp.update({"action": "on_tool_end"})
        resp.update(self.get_custom_callback_meta())
        if self.stream_logs:
            self._log_stream(output, resp, self.step)

        resp.update({"output": output})
        self.action_records.append(resp)

    def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when tool errors."""
        self.step += 1
        self.errors += 1

    def on_text(self, text: str, **kwargs: Any) -> None:
        """
        Run when agent is ending.
        """
        self.step += 1
        self.text_ctr += 1

        resp = self._init_resp()
        resp.update({"action": "on_text"})
        resp.update(self.get_custom_callback_meta())
        if self.stream_logs:
            self._log_stream(text, resp, self.step)

        resp.update({"text": text})
        self.action_records.append(resp)

    def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
        """Run when agent ends running."""
        self.step += 1
        self.agent_ends += 1
        self.ends += 1

        resp = self._init_resp()
        output = finish.return_values["output"]
        log = finish.log

        resp.update({"action": "on_agent_finish", "log": log})
        resp.update(self.get_custom_callback_meta())
        if self.stream_logs:
            self._log_stream(output, resp, self.step)

        resp.update({"output": output})
        self.action_records.append(resp)

    def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
        """Run on agent action."""
        self.step += 1
        self.tool_starts += 1
        self.starts += 1

        tool = action.tool
        tool_input = str(action.tool_input)
        log = action.log

        resp = self._init_resp()
        resp.update({"action": "on_agent_action", "log": log, "tool": tool})
        resp.update(self.get_custom_callback_meta())
        if self.stream_logs:
            self._log_stream(tool_input, resp, self.step)

        resp.update({"tool_input": tool_input})
        self.action_records.append(resp)

    def _get_complexity_metrics(self, text: str) -> dict:
        """Compute text complexity metrics using textstat.

        Parameters:
            text (str): The text to analyze.

        Returns:
            (dict): A dictionary containing the complexity metrics.
        """
        resp = {}
        if self.complexity_metrics:
            text_complexity_metrics = _fetch_text_complexity_metrics(text)
            resp.update(text_complexity_metrics)

        return resp

    def _get_custom_metrics(
        self, generation: Generation, prompt_idx: int, gen_idx: int
    ) -> dict:
        """Compute Custom Metrics for an LLM Generated Output

        Args:
            generation (LLMResult): Output generation from an LLM
            prompt_idx (int): List index of the input prompt
            gen_idx (int): List index of the generated output

        Returns:
            dict: A dictionary containing the custom metrics.
        """

        resp = {}
        if self.custom_metrics:
            custom_metrics = self.custom_metrics(generation, prompt_idx, gen_idx)
            resp.update(custom_metrics)

        return resp

    def flush_tracker(
        self,
        langchain_asset: Any = None,
        task_type: Optional[str] = "inference",
        workspace: Optional[str] = None,
        project_name: Optional[str] = "comet-langchain-demo",
        tags: Optional[Sequence] = None,
        name: Optional[str] = None,
        visualizations: Optional[List[str]] = None,
        complexity_metrics: bool = False,
        custom_metrics: Optional[Callable] = None,
        finish: bool = False,
        reset: bool = False,
    ) -> None:
        """Flush the tracker and setup the session.

        Everything after this will be a new table.

        Args:
            name: Name of the performed session so far so it is identifiable
            langchain_asset: The langchain asset to save.
            finish: Whether to finish the run.

            Returns:
                None
        """
        self._log_session(langchain_asset)

        if langchain_asset:
            try:
                self._log_model(langchain_asset)
            except Exception:
                self.comet_ml.LOGGER.error(
                    "Failed to export agent or LLM to Comet",
                    exc_info=True,
                    extra={"show_traceback": True},
                )

        if finish:
            self.experiment.end()

        if reset:
            self._reset(
                task_type,
                workspace,
                project_name,
                tags,
                name,
                visualizations,
                complexity_metrics,
                custom_metrics,
            )

    def _log_stream(self, prompt: str, metadata: dict, step: int) -> None:
        self.experiment.log_text(prompt, metadata=metadata, step=step)

    def _log_model(self, langchain_asset: Any) -> None:
        model_parameters = self._get_llm_parameters(langchain_asset)
        self.experiment.log_parameters(model_parameters, prefix="model")

        langchain_asset_path = Path(self.temp_dir.name, "model.json")
        model_name = self.name if self.name else LANGCHAIN_MODEL_NAME

        try:
            if hasattr(langchain_asset, "save"):
                langchain_asset.save(langchain_asset_path)
                self.experiment.log_model(model_name, str(langchain_asset_path))
        except (ValueError, AttributeError, NotImplementedError) as e:
            if hasattr(langchain_asset, "save_agent"):
                langchain_asset.save_agent(langchain_asset_path)
                self.experiment.log_model(model_name, str(langchain_asset_path))
            else:
                self.comet_ml.LOGGER.error(
                    f"{e}"
                    " Could not save Langchain Asset "
                    f"for {langchain_asset.__class__.__name__}"
                )

    def _log_session(self, langchain_asset: Optional[Any] = None) -> None:
        try:
            llm_session_df = self._create_session_analysis_dataframe(langchain_asset)
            # Log the cleaned dataframe as a table
            self.experiment.log_table("langchain-llm-session.csv", llm_session_df)
        except Exception:
            self.comet_ml.LOGGER.warning(
                "Failed to log session data to Comet",
                exc_info=True,
                extra={"show_traceback": True},
            )

        try:
            metadata = {"langchain_version": str(langchain.__version__)}
            # Log the langchain low-level records as a JSON file directly
            self.experiment.log_asset_data(
                self.action_records, "langchain-action_records.json", metadata=metadata
            )
        except Exception:
            self.comet_ml.LOGGER.warning(
                "Failed to log session data to Comet",
                exc_info=True,
                extra={"show_traceback": True},
            )

        try:
            self._log_visualizations(llm_session_df)
        except Exception:
            self.comet_ml.LOGGER.warning(
                "Failed to log visualizations to Comet",
                exc_info=True,
                extra={"show_traceback": True},
            )

    def _log_text_metrics(self, metrics: Sequence[dict], step: int) -> None:
        if not metrics:
            return

        metrics_summary = _summarize_metrics_for_generated_outputs(metrics)
        for key, value in metrics_summary.items():
            self.experiment.log_metrics(value, prefix=key, step=step)

    def _log_visualizations(self, session_df: Any) -> None:
        if not (self.visualizations and self.nlp):
            return

        spacy = import_spacy()

        prompts = session_df["prompts"].tolist()
        outputs = session_df["text"].tolist()

        for idx, (prompt, output) in enumerate(zip(prompts, outputs)):
            doc = self.nlp(output)
            sentence_spans = list(doc.sents)

            for visualization in self.visualizations:
                try:
                    html = spacy.displacy.render(
                        sentence_spans,
                        style=visualization,
                        options={"compact": True},
                        jupyter=False,
                        page=True,
                    )
                    self.experiment.log_asset_data(
                        html,
                        name=f"langchain-viz-{visualization}-{idx}.html",
                        metadata={"prompt": prompt},
                        step=idx,
                    )
                except Exception as e:
                    self.comet_ml.LOGGER.warning(
                        e, exc_info=True, extra={"show_traceback": True}
                    )

        return

    def _reset(
        self,
        task_type: Optional[str] = None,
        workspace: Optional[str] = None,
        project_name: Optional[str] = None,
        tags: Optional[Sequence] = None,
        name: Optional[str] = None,
        visualizations: Optional[List[str]] = None,
        complexity_metrics: bool = False,
        custom_metrics: Optional[Callable] = None,
    ) -> None:
        _task_type = task_type if task_type else self.task_type
        _workspace = workspace if workspace else self.workspace
        _project_name = project_name if project_name else self.project_name
        _tags = tags if tags else self.tags
        _name = name if name else self.name
        _visualizations = visualizations if visualizations else self.visualizations
        _complexity_metrics = (
            complexity_metrics if complexity_metrics else self.complexity_metrics
        )
        _custom_metrics = custom_metrics if custom_metrics else self.custom_metrics

        self.__init__(  # type: ignore
            task_type=_task_type,
            workspace=_workspace,
            project_name=_project_name,
            tags=_tags,
            name=_name,
            visualizations=_visualizations,
            complexity_metrics=_complexity_metrics,
            custom_metrics=_custom_metrics,
        )

        self.reset_callback_meta()
        self.temp_dir = tempfile.TemporaryDirectory()

    def _create_session_analysis_dataframe(self, langchain_asset: Any = None) -> dict:
        pd = import_pandas()

        llm_parameters = self._get_llm_parameters(langchain_asset)
        num_generations_per_prompt = llm_parameters.get("n", 1)

        llm_start_records_df = pd.DataFrame(self.on_llm_start_records)
        # Repeat each input row based on the number of outputs generated per prompt
        llm_start_records_df = llm_start_records_df.loc[
            llm_start_records_df.index.repeat(num_generations_per_prompt)
        ].reset_index(drop=True)
        llm_end_records_df = pd.DataFrame(self.on_llm_end_records)

        llm_session_df = pd.merge(
            llm_start_records_df,
            llm_end_records_df,
            left_index=True,
            right_index=True,
            suffixes=["_llm_start", "_llm_end"],
        )

        return llm_session_df

    def _get_llm_parameters(self, langchain_asset: Any = None) -> dict:
        if not langchain_asset:
            return {}
        try:
            if hasattr(langchain_asset, "agent"):
                llm_parameters = langchain_asset.agent.llm_chain.llm.dict()
            elif hasattr(langchain_asset, "llm_chain"):
                llm_parameters = langchain_asset.llm_chain.llm.dict()
            elif hasattr(langchain_asset, "llm"):
                llm_parameters = langchain_asset.llm.dict()
            else:
                llm_parameters = langchain_asset.dict()
        except Exception:
            return {}

        return llm_parameters