File size: 58,013 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
"""
.. warning::
  Beta Feature!

**Cache** provides an optional caching layer for LLMs.

Cache is useful for two reasons:

- It can save you money by reducing the number of API calls you make to the LLM
  provider if you're often requesting the same completion multiple times.
- It can speed up your application by reducing the number of API calls you make
  to the LLM provider.

Cache directly competes with Memory. See documentation for Pros and Cons.

**Class hierarchy:**

.. code-block::

    BaseCache --> <name>Cache  # Examples: InMemoryCache, RedisCache, GPTCache
"""
from __future__ import annotations

import hashlib
import inspect
import json
import logging
import uuid
import warnings
from datetime import timedelta
from functools import lru_cache
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    List,
    Optional,
    Tuple,
    Type,
    Union,
    cast,
)

from sqlalchemy import Column, Integer, Row, String, create_engine, select
from sqlalchemy.engine.base import Engine
from sqlalchemy.orm import Session

try:
    from sqlalchemy.orm import declarative_base
except ImportError:
    from sqlalchemy.ext.declarative import declarative_base

from langchain_core.caches import RETURN_VAL_TYPE, BaseCache
from langchain_core.embeddings import Embeddings
from langchain_core.load.dump import dumps
from langchain_core.load.load import loads
from langchain_core.outputs import ChatGeneration, Generation

from langchain.llms.base import LLM, get_prompts
from langchain.utils import get_from_env
from langchain.vectorstores.redis import Redis as RedisVectorstore

logger = logging.getLogger(__file__)

if TYPE_CHECKING:
    import momento
    from cassandra.cluster import Session as CassandraSession


def _hash(_input: str) -> str:
    """Use a deterministic hashing approach."""
    return hashlib.md5(_input.encode()).hexdigest()


def _dump_generations_to_json(generations: RETURN_VAL_TYPE) -> str:
    """Dump generations to json.

    Args:
        generations (RETURN_VAL_TYPE): A list of language model generations.

    Returns:
        str: Json representing a list of generations.

    Warning: would not work well with arbitrary subclasses of `Generation`
    """
    return json.dumps([generation.dict() for generation in generations])


def _load_generations_from_json(generations_json: str) -> RETURN_VAL_TYPE:
    """Load generations from json.

    Args:
        generations_json (str): A string of json representing a list of generations.

    Raises:
        ValueError: Could not decode json string to list of generations.

    Returns:
        RETURN_VAL_TYPE: A list of generations.

    Warning: would not work well with arbitrary subclasses of `Generation`
    """
    try:
        results = json.loads(generations_json)
        return [Generation(**generation_dict) for generation_dict in results]
    except json.JSONDecodeError:
        raise ValueError(
            f"Could not decode json to list of generations: {generations_json}"
        )


def _dumps_generations(generations: RETURN_VAL_TYPE) -> str:
    """
    Serialization for generic RETURN_VAL_TYPE, i.e. sequence of `Generation`

    Args:
        generations (RETURN_VAL_TYPE): A list of language model generations.

    Returns:
        str: a single string representing a list of generations.

    This function (+ its counterpart `_loads_generations`) rely on
    the dumps/loads pair with Reviver, so are able to deal
    with all subclasses of Generation.

    Each item in the list can be `dumps`ed to a string,
    then we make the whole list of strings into a json-dumped.
    """
    return json.dumps([dumps(_item) for _item in generations])


def _loads_generations(generations_str: str) -> Union[RETURN_VAL_TYPE, None]:
    """
    Deserialization of a string into a generic RETURN_VAL_TYPE
    (i.e. a sequence of `Generation`).

    See `_dumps_generations`, the inverse of this function.

    Args:
        generations_str (str): A string representing a list of generations.

    Compatible with the legacy cache-blob format
    Does not raise exceptions for malformed entries, just logs a warning
    and returns none: the caller should be prepared for such a cache miss.

    Returns:
        RETURN_VAL_TYPE: A list of generations.
    """
    try:
        generations = [loads(_item_str) for _item_str in json.loads(generations_str)]
        return generations
    except (json.JSONDecodeError, TypeError):
        # deferring the (soft) handling to after the legacy-format attempt
        pass

    try:
        gen_dicts = json.loads(generations_str)
        # not relying on `_load_generations_from_json` (which could disappear):
        generations = [Generation(**generation_dict) for generation_dict in gen_dicts]
        logger.warning(
            f"Legacy 'Generation' cached blob encountered: '{generations_str}'"
        )
        return generations
    except (json.JSONDecodeError, TypeError):
        logger.warning(
            f"Malformed/unparsable cached blob encountered: '{generations_str}'"
        )
        return None


class InMemoryCache(BaseCache):
    """Cache that stores things in memory."""

    def __init__(self) -> None:
        """Initialize with empty cache."""
        self._cache: Dict[Tuple[str, str], RETURN_VAL_TYPE] = {}

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Look up based on prompt and llm_string."""
        return self._cache.get((prompt, llm_string), None)

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Update cache based on prompt and llm_string."""
        self._cache[(prompt, llm_string)] = return_val

    def clear(self, **kwargs: Any) -> None:
        """Clear cache."""
        self._cache = {}


Base = declarative_base()


class FullLLMCache(Base):  # type: ignore
    """SQLite table for full LLM Cache (all generations)."""

    __tablename__ = "full_llm_cache"
    prompt = Column(String, primary_key=True)
    llm = Column(String, primary_key=True)
    idx = Column(Integer, primary_key=True)
    response = Column(String)


class SQLAlchemyCache(BaseCache):
    """Cache that uses SQAlchemy as a backend."""

    def __init__(self, engine: Engine, cache_schema: Type[FullLLMCache] = FullLLMCache):
        """Initialize by creating all tables."""
        self.engine = engine
        self.cache_schema = cache_schema
        self.cache_schema.metadata.create_all(self.engine)

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Look up based on prompt and llm_string."""
        stmt = (
            select(self.cache_schema.response)
            .where(self.cache_schema.prompt == prompt)  # type: ignore
            .where(self.cache_schema.llm == llm_string)
            .order_by(self.cache_schema.idx)
        )
        with Session(self.engine) as session:
            rows = session.execute(stmt).fetchall()
            if rows:
                try:
                    return [loads(row[0]) for row in rows]
                except Exception:
                    logger.warning(
                        "Retrieving a cache value that could not be deserialized "
                        "properly. This is likely due to the cache being in an "
                        "older format. Please recreate your cache to avoid this "
                        "error."
                    )
                    # In a previous life we stored the raw text directly
                    # in the table, so assume it's in that format.
                    return [Generation(text=row[0]) for row in rows]
        return None

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Update based on prompt and llm_string."""
        items = [
            self.cache_schema(prompt=prompt, llm=llm_string, response=dumps(gen), idx=i)
            for i, gen in enumerate(return_val)
        ]
        with Session(self.engine) as session, session.begin():
            for item in items:
                session.merge(item)

    def clear(self, **kwargs: Any) -> None:
        """Clear cache."""
        with Session(self.engine) as session:
            session.query(self.cache_schema).delete()
            session.commit()


class SQLiteCache(SQLAlchemyCache):
    """Cache that uses SQLite as a backend."""

    def __init__(self, database_path: str = ".langchain.db"):
        """Initialize by creating the engine and all tables."""
        engine = create_engine(f"sqlite:///{database_path}")
        super().__init__(engine)


class UpstashRedisCache(BaseCache):
    """Cache that uses Upstash Redis as a backend."""

    def __init__(self, redis_: Any, *, ttl: Optional[int] = None):
        """
        Initialize an instance of UpstashRedisCache.

        This method initializes an object with Upstash Redis caching capabilities.
        It takes a `redis_` parameter, which should be an instance of an Upstash Redis
        client class, allowing the object to interact with Upstash Redis
        server for caching purposes.

        Parameters:
            redis_: An instance of Upstash Redis client class
                (e.g., Redis) used for caching.
                This allows the object to communicate with
                Redis server for caching operations on.
            ttl (int, optional): Time-to-live (TTL) for cached items in seconds.
                If provided, it sets the time duration for how long cached
                items will remain valid. If not provided, cached items will not
                have an automatic expiration.
        """
        try:
            from upstash_redis import Redis
        except ImportError:
            raise ValueError(
                "Could not import upstash_redis python package. "
                "Please install it with `pip install upstash_redis`."
            )
        if not isinstance(redis_, Redis):
            raise ValueError("Please pass in Upstash Redis object.")
        self.redis = redis_
        self.ttl = ttl

    def _key(self, prompt: str, llm_string: str) -> str:
        """Compute key from prompt and llm_string"""
        return _hash(prompt + llm_string)

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Look up based on prompt and llm_string."""
        generations = []
        # Read from a HASH
        results = self.redis.hgetall(self._key(prompt, llm_string))
        if results:
            for _, text in results.items():
                generations.append(Generation(text=text))
        return generations if generations else None

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Update cache based on prompt and llm_string."""
        for gen in return_val:
            if not isinstance(gen, Generation):
                raise ValueError(
                    "UpstashRedisCache supports caching of normal LLM generations, "
                    f"got {type(gen)}"
                )
            if isinstance(gen, ChatGeneration):
                warnings.warn(
                    "NOTE: Generation has not been cached. UpstashRedisCache does not"
                    " support caching ChatModel outputs."
                )
                return
        # Write to a HASH
        key = self._key(prompt, llm_string)

        mapping = {
            str(idx): generation.text for idx, generation in enumerate(return_val)
        }
        self.redis.hset(key=key, values=mapping)

        if self.ttl is not None:
            self.redis.expire(key, self.ttl)

    def clear(self, **kwargs: Any) -> None:
        """
        Clear cache. If `asynchronous` is True, flush asynchronously.
        This flushes the *whole* db.
        """
        asynchronous = kwargs.get("asynchronous", False)
        if asynchronous:
            asynchronous = "ASYNC"
        else:
            asynchronous = "SYNC"
        self.redis.flushdb(flush_type=asynchronous)


class RedisCache(BaseCache):
    """Cache that uses Redis as a backend."""

    def __init__(self, redis_: Any, *, ttl: Optional[int] = None):
        """
        Initialize an instance of RedisCache.

        This method initializes an object with Redis caching capabilities.
        It takes a `redis_` parameter, which should be an instance of a Redis
        client class, allowing the object to interact with a Redis
        server for caching purposes.

        Parameters:
            redis_ (Any): An instance of a Redis client class
                (e.g., redis.Redis) used for caching.
                This allows the object to communicate with a
                Redis server for caching operations.
            ttl (int, optional): Time-to-live (TTL) for cached items in seconds.
                If provided, it sets the time duration for how long cached
                items will remain valid. If not provided, cached items will not
                have an automatic expiration.
        """
        try:
            from redis import Redis
        except ImportError:
            raise ValueError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            )
        if not isinstance(redis_, Redis):
            raise ValueError("Please pass in Redis object.")
        self.redis = redis_
        self.ttl = ttl

    def _key(self, prompt: str, llm_string: str) -> str:
        """Compute key from prompt and llm_string"""
        return _hash(prompt + llm_string)

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Look up based on prompt and llm_string."""
        generations = []
        # Read from a Redis HASH
        results = self.redis.hgetall(self._key(prompt, llm_string))
        if results:
            for _, text in results.items():
                try:
                    generations.append(loads(text))
                except Exception:
                    logger.warning(
                        "Retrieving a cache value that could not be deserialized "
                        "properly. This is likely due to the cache being in an "
                        "older format. Please recreate your cache to avoid this "
                        "error."
                    )
                    # In a previous life we stored the raw text directly
                    # in the table, so assume it's in that format.
                    generations.append(Generation(text=text))
        return generations if generations else None

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Update cache based on prompt and llm_string."""
        for gen in return_val:
            if not isinstance(gen, Generation):
                raise ValueError(
                    "RedisCache only supports caching of normal LLM generations, "
                    f"got {type(gen)}"
                )
        # Write to a Redis HASH
        key = self._key(prompt, llm_string)

        with self.redis.pipeline() as pipe:
            pipe.hset(
                key,
                mapping={
                    str(idx): dumps(generation)
                    for idx, generation in enumerate(return_val)
                },
            )
            if self.ttl is not None:
                pipe.expire(key, self.ttl)

            pipe.execute()

    def clear(self, **kwargs: Any) -> None:
        """Clear cache. If `asynchronous` is True, flush asynchronously."""
        asynchronous = kwargs.get("asynchronous", False)
        self.redis.flushdb(asynchronous=asynchronous, **kwargs)


class RedisSemanticCache(BaseCache):
    """Cache that uses Redis as a vector-store backend."""

    # TODO - implement a TTL policy in Redis

    DEFAULT_SCHEMA = {
        "content_key": "prompt",
        "text": [
            {"name": "prompt"},
        ],
        "extra": [{"name": "return_val"}, {"name": "llm_string"}],
    }

    def __init__(
        self, redis_url: str, embedding: Embeddings, score_threshold: float = 0.2
    ):
        """Initialize by passing in the `init` GPTCache func

        Args:
            redis_url (str): URL to connect to Redis.
            embedding (Embedding): Embedding provider for semantic encoding and search.
            score_threshold (float, 0.2):

        Example:

        .. code-block:: python

            from langchain.globals import set_llm_cache

            from langchain.cache import RedisSemanticCache
            from langchain.embeddings import OpenAIEmbeddings

            set_llm_cache(RedisSemanticCache(
                redis_url="redis://localhost:6379",
                embedding=OpenAIEmbeddings()
            ))

        """
        self._cache_dict: Dict[str, RedisVectorstore] = {}
        self.redis_url = redis_url
        self.embedding = embedding
        self.score_threshold = score_threshold

    def _index_name(self, llm_string: str) -> str:
        hashed_index = _hash(llm_string)
        return f"cache:{hashed_index}"

    def _get_llm_cache(self, llm_string: str) -> RedisVectorstore:
        index_name = self._index_name(llm_string)

        # return vectorstore client for the specific llm string
        if index_name in self._cache_dict:
            return self._cache_dict[index_name]

        # create new vectorstore client for the specific llm string
        try:
            self._cache_dict[index_name] = RedisVectorstore.from_existing_index(
                embedding=self.embedding,
                index_name=index_name,
                redis_url=self.redis_url,
                schema=cast(Dict, self.DEFAULT_SCHEMA),
            )
        except ValueError:
            redis = RedisVectorstore(
                embedding=self.embedding,
                index_name=index_name,
                redis_url=self.redis_url,
                index_schema=cast(Dict, self.DEFAULT_SCHEMA),
            )
            _embedding = self.embedding.embed_query(text="test")
            redis._create_index_if_not_exist(dim=len(_embedding))
            self._cache_dict[index_name] = redis

        return self._cache_dict[index_name]

    def clear(self, **kwargs: Any) -> None:
        """Clear semantic cache for a given llm_string."""
        index_name = self._index_name(kwargs["llm_string"])
        if index_name in self._cache_dict:
            self._cache_dict[index_name].drop_index(
                index_name=index_name, delete_documents=True, redis_url=self.redis_url
            )
            del self._cache_dict[index_name]

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Look up based on prompt and llm_string."""
        llm_cache = self._get_llm_cache(llm_string)
        generations: List = []
        # Read from a Hash
        results = llm_cache.similarity_search(
            query=prompt,
            k=1,
            distance_threshold=self.score_threshold,
        )
        if results:
            for document in results:
                try:
                    generations.extend(loads(document.metadata["return_val"]))
                except Exception:
                    logger.warning(
                        "Retrieving a cache value that could not be deserialized "
                        "properly. This is likely due to the cache being in an "
                        "older format. Please recreate your cache to avoid this "
                        "error."
                    )
                    # In a previous life we stored the raw text directly
                    # in the table, so assume it's in that format.
                    generations.extend(
                        _load_generations_from_json(document.metadata["return_val"])
                    )
        return generations if generations else None

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Update cache based on prompt and llm_string."""
        for gen in return_val:
            if not isinstance(gen, Generation):
                raise ValueError(
                    "RedisSemanticCache only supports caching of "
                    f"normal LLM generations, got {type(gen)}"
                )
        llm_cache = self._get_llm_cache(llm_string)

        metadata = {
            "llm_string": llm_string,
            "prompt": prompt,
            "return_val": dumps([g for g in return_val]),
        }
        llm_cache.add_texts(texts=[prompt], metadatas=[metadata])


class GPTCache(BaseCache):
    """Cache that uses GPTCache as a backend."""

    def __init__(
        self,
        init_func: Union[
            Callable[[Any, str], None], Callable[[Any], None], None
        ] = None,
    ):
        """Initialize by passing in init function (default: `None`).

        Args:
            init_func (Optional[Callable[[Any], None]]): init `GPTCache` function
            (default: `None`)

        Example:
        .. code-block:: python

            # Initialize GPTCache with a custom init function
            import gptcache
            from gptcache.processor.pre import get_prompt
            from gptcache.manager.factory import get_data_manager
            from langchain.globals import set_llm_cache

            # Avoid multiple caches using the same file,
            causing different llm model caches to affect each other

            def init_gptcache(cache_obj: gptcache.Cache, llm str):
                cache_obj.init(
                    pre_embedding_func=get_prompt,
                    data_manager=manager_factory(
                        manager="map",
                        data_dir=f"map_cache_{llm}"
                    ),
                )

            set_llm_cache(GPTCache(init_gptcache))

        """
        try:
            import gptcache  # noqa: F401
        except ImportError:
            raise ImportError(
                "Could not import gptcache python package. "
                "Please install it with `pip install gptcache`."
            )

        self.init_gptcache_func: Union[
            Callable[[Any, str], None], Callable[[Any], None], None
        ] = init_func
        self.gptcache_dict: Dict[str, Any] = {}

    def _new_gptcache(self, llm_string: str) -> Any:
        """New gptcache object"""
        from gptcache import Cache
        from gptcache.manager.factory import get_data_manager
        from gptcache.processor.pre import get_prompt

        _gptcache = Cache()
        if self.init_gptcache_func is not None:
            sig = inspect.signature(self.init_gptcache_func)
            if len(sig.parameters) == 2:
                self.init_gptcache_func(_gptcache, llm_string)  # type: ignore[call-arg]
            else:
                self.init_gptcache_func(_gptcache)  # type: ignore[call-arg]
        else:
            _gptcache.init(
                pre_embedding_func=get_prompt,
                data_manager=get_data_manager(data_path=llm_string),
            )

        self.gptcache_dict[llm_string] = _gptcache
        return _gptcache

    def _get_gptcache(self, llm_string: str) -> Any:
        """Get a cache object.

        When the corresponding llm model cache does not exist, it will be created."""
        _gptcache = self.gptcache_dict.get(llm_string, None)
        if not _gptcache:
            _gptcache = self._new_gptcache(llm_string)
        return _gptcache

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Look up the cache data.
        First, retrieve the corresponding cache object using the `llm_string` parameter,
        and then retrieve the data from the cache based on the `prompt`.
        """
        from gptcache.adapter.api import get

        _gptcache = self._get_gptcache(llm_string)

        res = get(prompt, cache_obj=_gptcache)
        if res:
            return [
                Generation(**generation_dict) for generation_dict in json.loads(res)
            ]
        return None

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Update cache.
        First, retrieve the corresponding cache object using the `llm_string` parameter,
        and then store the `prompt` and `return_val` in the cache object.
        """
        for gen in return_val:
            if not isinstance(gen, Generation):
                raise ValueError(
                    "GPTCache only supports caching of normal LLM generations, "
                    f"got {type(gen)}"
                )
        from gptcache.adapter.api import put

        _gptcache = self._get_gptcache(llm_string)
        handled_data = json.dumps([generation.dict() for generation in return_val])
        put(prompt, handled_data, cache_obj=_gptcache)
        return None

    def clear(self, **kwargs: Any) -> None:
        """Clear cache."""
        from gptcache import Cache

        for gptcache_instance in self.gptcache_dict.values():
            gptcache_instance = cast(Cache, gptcache_instance)
            gptcache_instance.flush()

        self.gptcache_dict.clear()


def _ensure_cache_exists(cache_client: momento.CacheClient, cache_name: str) -> None:
    """Create cache if it doesn't exist.

    Raises:
        SdkException: Momento service or network error
        Exception: Unexpected response
    """
    from momento.responses import CreateCache

    create_cache_response = cache_client.create_cache(cache_name)
    if isinstance(create_cache_response, CreateCache.Success) or isinstance(
        create_cache_response, CreateCache.CacheAlreadyExists
    ):
        return None
    elif isinstance(create_cache_response, CreateCache.Error):
        raise create_cache_response.inner_exception
    else:
        raise Exception(f"Unexpected response cache creation: {create_cache_response}")


def _validate_ttl(ttl: Optional[timedelta]) -> None:
    if ttl is not None and ttl <= timedelta(seconds=0):
        raise ValueError(f"ttl must be positive but was {ttl}.")


class MomentoCache(BaseCache):
    """Cache that uses Momento as a backend. See https://gomomento.com/"""

    def __init__(
        self,
        cache_client: momento.CacheClient,
        cache_name: str,
        *,
        ttl: Optional[timedelta] = None,
        ensure_cache_exists: bool = True,
    ):
        """Instantiate a prompt cache using Momento as a backend.

        Note: to instantiate the cache client passed to MomentoCache,
        you must have a Momento account. See https://gomomento.com/.

        Args:
            cache_client (CacheClient): The Momento cache client.
            cache_name (str): The name of the cache to use to store the data.
            ttl (Optional[timedelta], optional): The time to live for the cache items.
                Defaults to None, ie use the client default TTL.
            ensure_cache_exists (bool, optional): Create the cache if it doesn't
                exist. Defaults to True.

        Raises:
            ImportError: Momento python package is not installed.
            TypeError: cache_client is not of type momento.CacheClientObject
            ValueError: ttl is non-null and non-negative
        """
        try:
            from momento import CacheClient
        except ImportError:
            raise ImportError(
                "Could not import momento python package. "
                "Please install it with `pip install momento`."
            )
        if not isinstance(cache_client, CacheClient):
            raise TypeError("cache_client must be a momento.CacheClient object.")
        _validate_ttl(ttl)
        if ensure_cache_exists:
            _ensure_cache_exists(cache_client, cache_name)

        self.cache_client = cache_client
        self.cache_name = cache_name
        self.ttl = ttl

    @classmethod
    def from_client_params(
        cls,
        cache_name: str,
        ttl: timedelta,
        *,
        configuration: Optional[momento.config.Configuration] = None,
        api_key: Optional[str] = None,
        auth_token: Optional[str] = None,  # for backwards compatibility
        **kwargs: Any,
    ) -> MomentoCache:
        """Construct cache from CacheClient parameters."""
        try:
            from momento import CacheClient, Configurations, CredentialProvider
        except ImportError:
            raise ImportError(
                "Could not import momento python package. "
                "Please install it with `pip install momento`."
            )
        if configuration is None:
            configuration = Configurations.Laptop.v1()

        # Try checking `MOMENTO_AUTH_TOKEN` first for backwards compatibility
        try:
            api_key = auth_token or get_from_env("auth_token", "MOMENTO_AUTH_TOKEN")
        except ValueError:
            api_key = api_key or get_from_env("api_key", "MOMENTO_API_KEY")
        credentials = CredentialProvider.from_string(api_key)
        cache_client = CacheClient(configuration, credentials, default_ttl=ttl)
        return cls(cache_client, cache_name, ttl=ttl, **kwargs)

    def __key(self, prompt: str, llm_string: str) -> str:
        """Compute cache key from prompt and associated model and settings.

        Args:
            prompt (str): The prompt run through the language model.
            llm_string (str): The language model version and settings.

        Returns:
            str: The cache key.
        """
        return _hash(prompt + llm_string)

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Lookup llm generations in cache by prompt and associated model and settings.

        Args:
            prompt (str): The prompt run through the language model.
            llm_string (str): The language model version and settings.

        Raises:
            SdkException: Momento service or network error

        Returns:
            Optional[RETURN_VAL_TYPE]: A list of language model generations.
        """
        from momento.responses import CacheGet

        generations: RETURN_VAL_TYPE = []

        get_response = self.cache_client.get(
            self.cache_name, self.__key(prompt, llm_string)
        )
        if isinstance(get_response, CacheGet.Hit):
            value = get_response.value_string
            generations = _load_generations_from_json(value)
        elif isinstance(get_response, CacheGet.Miss):
            pass
        elif isinstance(get_response, CacheGet.Error):
            raise get_response.inner_exception
        return generations if generations else None

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Store llm generations in cache.

        Args:
            prompt (str): The prompt run through the language model.
            llm_string (str): The language model string.
            return_val (RETURN_VAL_TYPE): A list of language model generations.

        Raises:
            SdkException: Momento service or network error
            Exception: Unexpected response
        """
        for gen in return_val:
            if not isinstance(gen, Generation):
                raise ValueError(
                    "Momento only supports caching of normal LLM generations, "
                    f"got {type(gen)}"
                )
        key = self.__key(prompt, llm_string)
        value = _dump_generations_to_json(return_val)
        set_response = self.cache_client.set(self.cache_name, key, value, self.ttl)
        from momento.responses import CacheSet

        if isinstance(set_response, CacheSet.Success):
            pass
        elif isinstance(set_response, CacheSet.Error):
            raise set_response.inner_exception
        else:
            raise Exception(f"Unexpected response: {set_response}")

    def clear(self, **kwargs: Any) -> None:
        """Clear the cache.

        Raises:
            SdkException: Momento service or network error
        """
        from momento.responses import CacheFlush

        flush_response = self.cache_client.flush_cache(self.cache_name)
        if isinstance(flush_response, CacheFlush.Success):
            pass
        elif isinstance(flush_response, CacheFlush.Error):
            raise flush_response.inner_exception


CASSANDRA_CACHE_DEFAULT_TABLE_NAME = "langchain_llm_cache"
CASSANDRA_CACHE_DEFAULT_TTL_SECONDS = None


class CassandraCache(BaseCache):
    """
    Cache that uses Cassandra / Astra DB as a backend.

    It uses a single Cassandra table.
    The lookup keys (which get to form the primary key) are:
        - prompt, a string
        - llm_string, a deterministic str representation of the model parameters.
          (needed to prevent collisions same-prompt-different-model collisions)
    """

    def __init__(
        self,
        session: Optional[CassandraSession] = None,
        keyspace: Optional[str] = None,
        table_name: str = CASSANDRA_CACHE_DEFAULT_TABLE_NAME,
        ttl_seconds: Optional[int] = CASSANDRA_CACHE_DEFAULT_TTL_SECONDS,
        skip_provisioning: bool = False,
    ):
        """
        Initialize with a ready session and a keyspace name.
        Args:
            session (cassandra.cluster.Session): an open Cassandra session
            keyspace (str): the keyspace to use for storing the cache
            table_name (str): name of the Cassandra table to use as cache
            ttl_seconds (optional int): time-to-live for cache entries
                (default: None, i.e. forever)
        """
        try:
            from cassio.table import ElasticCassandraTable
        except (ImportError, ModuleNotFoundError):
            raise ValueError(
                "Could not import cassio python package. "
                "Please install it with `pip install cassio`."
            )

        self.session = session
        self.keyspace = keyspace
        self.table_name = table_name
        self.ttl_seconds = ttl_seconds

        self.kv_cache = ElasticCassandraTable(
            session=self.session,
            keyspace=self.keyspace,
            table=self.table_name,
            keys=["llm_string", "prompt"],
            primary_key_type=["TEXT", "TEXT"],
            ttl_seconds=self.ttl_seconds,
            skip_provisioning=skip_provisioning,
        )

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Look up based on prompt and llm_string."""
        item = self.kv_cache.get(
            llm_string=_hash(llm_string),
            prompt=_hash(prompt),
        )
        if item is not None:
            generations = _loads_generations(item["body_blob"])
            # this protects against malformed cached items:
            if generations is not None:
                return generations
            else:
                return None
        else:
            return None

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Update cache based on prompt and llm_string."""
        blob = _dumps_generations(return_val)
        self.kv_cache.put(
            llm_string=_hash(llm_string),
            prompt=_hash(prompt),
            body_blob=blob,
        )

    def delete_through_llm(
        self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
    ) -> None:
        """
        A wrapper around `delete` with the LLM being passed.
        In case the llm(prompt) calls have a `stop` param, you should pass it here
        """
        llm_string = get_prompts(
            {**llm.dict(), **{"stop": stop}},
            [],
        )[1]
        return self.delete(prompt, llm_string=llm_string)

    def delete(self, prompt: str, llm_string: str) -> None:
        """Evict from cache if there's an entry."""
        return self.kv_cache.delete(
            llm_string=_hash(llm_string),
            prompt=_hash(prompt),
        )

    def clear(self, **kwargs: Any) -> None:
        """Clear cache. This is for all LLMs at once."""
        self.kv_cache.clear()


CASSANDRA_SEMANTIC_CACHE_DEFAULT_DISTANCE_METRIC = "dot"
CASSANDRA_SEMANTIC_CACHE_DEFAULT_SCORE_THRESHOLD = 0.85
CASSANDRA_SEMANTIC_CACHE_DEFAULT_TABLE_NAME = "langchain_llm_semantic_cache"
CASSANDRA_SEMANTIC_CACHE_DEFAULT_TTL_SECONDS = None
CASSANDRA_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE = 16


class CassandraSemanticCache(BaseCache):
    """
    Cache that uses Cassandra as a vector-store backend for semantic
    (i.e. similarity-based) lookup.

    It uses a single (vector) Cassandra table and stores, in principle,
    cached values from several LLMs, so the LLM's llm_string is part
    of the rows' primary keys.

    The similarity is based on one of several distance metrics (default: "dot").
    If choosing another metric, the default threshold is to be re-tuned accordingly.
    """

    def __init__(
        self,
        session: Optional[CassandraSession],
        keyspace: Optional[str],
        embedding: Embeddings,
        table_name: str = CASSANDRA_SEMANTIC_CACHE_DEFAULT_TABLE_NAME,
        distance_metric: str = CASSANDRA_SEMANTIC_CACHE_DEFAULT_DISTANCE_METRIC,
        score_threshold: float = CASSANDRA_SEMANTIC_CACHE_DEFAULT_SCORE_THRESHOLD,
        ttl_seconds: Optional[int] = CASSANDRA_SEMANTIC_CACHE_DEFAULT_TTL_SECONDS,
        skip_provisioning: bool = False,
    ):
        """
        Initialize the cache with all relevant parameters.
        Args:
            session (cassandra.cluster.Session): an open Cassandra session
            keyspace (str): the keyspace to use for storing the cache
            embedding (Embedding): Embedding provider for semantic
                encoding and search.
            table_name (str): name of the Cassandra (vector) table
                to use as cache
            distance_metric (str, 'dot'): which measure to adopt for
                similarity searches
            score_threshold (optional float): numeric value to use as
                cutoff for the similarity searches
            ttl_seconds (optional int): time-to-live for cache entries
                (default: None, i.e. forever)
        The default score threshold is tuned to the default metric.
        Tune it carefully yourself if switching to another distance metric.
        """
        try:
            from cassio.table import MetadataVectorCassandraTable
        except (ImportError, ModuleNotFoundError):
            raise ValueError(
                "Could not import cassio python package. "
                "Please install it with `pip install cassio`."
            )
        self.session = session
        self.keyspace = keyspace
        self.embedding = embedding
        self.table_name = table_name
        self.distance_metric = distance_metric
        self.score_threshold = score_threshold
        self.ttl_seconds = ttl_seconds

        # The contract for this class has separate lookup and update:
        # in order to spare some embedding calculations we cache them between
        # the two calls.
        # Note: each instance of this class has its own `_get_embedding` with
        # its own lru.
        @lru_cache(maxsize=CASSANDRA_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE)
        def _cache_embedding(text: str) -> List[float]:
            return self.embedding.embed_query(text=text)

        self._get_embedding = _cache_embedding
        self.embedding_dimension = self._get_embedding_dimension()

        self.table = MetadataVectorCassandraTable(
            session=self.session,
            keyspace=self.keyspace,
            table=self.table_name,
            primary_key_type=["TEXT"],
            vector_dimension=self.embedding_dimension,
            ttl_seconds=self.ttl_seconds,
            metadata_indexing=("allow", {"_llm_string_hash"}),
            skip_provisioning=skip_provisioning,
        )

    def _get_embedding_dimension(self) -> int:
        return len(self._get_embedding(text="This is a sample sentence."))

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Update cache based on prompt and llm_string."""
        embedding_vector = self._get_embedding(text=prompt)
        llm_string_hash = _hash(llm_string)
        body = _dumps_generations(return_val)
        metadata = {
            "_prompt": prompt,
            "_llm_string_hash": llm_string_hash,
        }
        row_id = f"{_hash(prompt)}-{llm_string_hash}"
        #
        self.table.put(
            body_blob=body,
            vector=embedding_vector,
            row_id=row_id,
            metadata=metadata,
        )

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Look up based on prompt and llm_string."""
        hit_with_id = self.lookup_with_id(prompt, llm_string)
        if hit_with_id is not None:
            return hit_with_id[1]
        else:
            return None

    def lookup_with_id(
        self, prompt: str, llm_string: str
    ) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
        """
        Look up based on prompt and llm_string.
        If there are hits, return (document_id, cached_entry)
        """
        prompt_embedding: List[float] = self._get_embedding(text=prompt)
        hits = list(
            self.table.metric_ann_search(
                vector=prompt_embedding,
                metadata={"_llm_string_hash": _hash(llm_string)},
                n=1,
                metric=self.distance_metric,
                metric_threshold=self.score_threshold,
            )
        )
        if hits:
            hit = hits[0]
            generations = _loads_generations(hit["body_blob"])
            if generations is not None:
                # this protects against malformed cached items:
                return (
                    hit["row_id"],
                    generations,
                )
            else:
                return None
        else:
            return None

    def lookup_with_id_through_llm(
        self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
    ) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
        llm_string = get_prompts(
            {**llm.dict(), **{"stop": stop}},
            [],
        )[1]
        return self.lookup_with_id(prompt, llm_string=llm_string)

    def delete_by_document_id(self, document_id: str) -> None:
        """
        Given this is a "similarity search" cache, an invalidation pattern
        that makes sense is first a lookup to get an ID, and then deleting
        with that ID. This is for the second step.
        """
        self.table.delete(row_id=document_id)

    def clear(self, **kwargs: Any) -> None:
        """Clear the *whole* semantic cache."""
        self.table.clear()


class FullMd5LLMCache(Base):  # type: ignore
    """SQLite table for full LLM Cache (all generations)."""

    __tablename__ = "full_md5_llm_cache"
    id = Column(String, primary_key=True)
    prompt_md5 = Column(String, index=True)
    llm = Column(String, index=True)
    idx = Column(Integer, index=True)
    prompt = Column(String)
    response = Column(String)


class SQLAlchemyMd5Cache(BaseCache):
    """Cache that uses SQAlchemy as a backend."""

    def __init__(
        self, engine: Engine, cache_schema: Type[FullMd5LLMCache] = FullMd5LLMCache
    ):
        """Initialize by creating all tables."""
        self.engine = engine
        self.cache_schema = cache_schema
        self.cache_schema.metadata.create_all(self.engine)

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Look up based on prompt and llm_string."""
        rows = self._search_rows(prompt, llm_string)
        if rows:
            return [loads(row[0]) for row in rows]
        return None

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Update based on prompt and llm_string."""
        self._delete_previous(prompt, llm_string)
        prompt_md5 = self.get_md5(prompt)
        items = [
            self.cache_schema(
                id=str(uuid.uuid1()),
                prompt=prompt,
                prompt_md5=prompt_md5,
                llm=llm_string,
                response=dumps(gen),
                idx=i,
            )
            for i, gen in enumerate(return_val)
        ]
        with Session(self.engine) as session, session.begin():
            for item in items:
                session.merge(item)

    def _delete_previous(self, prompt: str, llm_string: str) -> None:
        stmt = (
            select(self.cache_schema.response)
            .where(self.cache_schema.prompt_md5 == self.get_md5(prompt))  # type: ignore
            .where(self.cache_schema.llm == llm_string)
            .where(self.cache_schema.prompt == prompt)
            .order_by(self.cache_schema.idx)
        )
        with Session(self.engine) as session, session.begin():
            rows = session.execute(stmt).fetchall()
            for item in rows:
                session.delete(item)

    def _search_rows(self, prompt: str, llm_string: str) -> List[Row]:
        prompt_pd5 = self.get_md5(prompt)
        stmt = (
            select(self.cache_schema.response)
            .where(self.cache_schema.prompt_md5 == prompt_pd5)  # type: ignore
            .where(self.cache_schema.llm == llm_string)
            .where(self.cache_schema.prompt == prompt)
            .order_by(self.cache_schema.idx)
        )
        with Session(self.engine) as session:
            return session.execute(stmt).fetchall()

    def clear(self, **kwargs: Any) -> None:
        """Clear cache."""
        with Session(self.engine) as session:
            session.execute(self.cache_schema.delete())

    @staticmethod
    def get_md5(input_string: str) -> str:
        return hashlib.md5(input_string.encode()).hexdigest()


ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME = "langchain_astradb_cache"


class AstraDBCache(BaseCache):
    """
    Cache that uses Astra DB as a backend.

    It uses a single collection as a kv store
    The lookup keys, combined in the _id of the documents, are:
        - prompt, a string
        - llm_string, a deterministic str representation of the model parameters.
          (needed to prevent same-prompt-different-model collisions)
    """

    def __init__(
        self,
        *,
        collection_name: str = ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME,
        token: Optional[str] = None,
        api_endpoint: Optional[str] = None,
        astra_db_client: Optional[Any] = None,  # 'astrapy.db.AstraDB' if passed
        namespace: Optional[str] = None,
    ):
        """
        Create an AstraDB cache using a collection for storage.

        Args (only keyword-arguments accepted):
            collection_name (str): name of the Astra DB collection to create/use.
            token (Optional[str]): API token for Astra DB usage.
            api_endpoint (Optional[str]): full URL to the API endpoint,
                such as "https://<DB-ID>-us-east1.apps.astra.datastax.com".
            astra_db_client (Optional[Any]): *alternative to token+api_endpoint*,
                you can pass an already-created 'astrapy.db.AstraDB' instance.
            namespace (Optional[str]): namespace (aka keyspace) where the
                collection is created. Defaults to the database's "default namespace".
        """
        try:
            from astrapy.db import (
                AstraDB as LibAstraDB,
            )
        except (ImportError, ModuleNotFoundError):
            raise ImportError(
                "Could not import a recent astrapy python package. "
                "Please install it with `pip install --upgrade astrapy`."
            )
        # Conflicting-arg checks:
        if astra_db_client is not None:
            if token is not None or api_endpoint is not None:
                raise ValueError(
                    "You cannot pass 'astra_db_client' to AstraDB if passing "
                    "'token' and 'api_endpoint'."
                )

        self.collection_name = collection_name
        self.token = token
        self.api_endpoint = api_endpoint
        self.namespace = namespace

        if astra_db_client is not None:
            self.astra_db = astra_db_client
        else:
            self.astra_db = LibAstraDB(
                token=self.token,
                api_endpoint=self.api_endpoint,
                namespace=self.namespace,
            )
        self.collection = self.astra_db.create_collection(
            collection_name=self.collection_name,
        )

    @staticmethod
    def _make_id(prompt: str, llm_string: str) -> str:
        return f"{_hash(prompt)}#{_hash(llm_string)}"

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Look up based on prompt and llm_string."""
        doc_id = self._make_id(prompt, llm_string)
        item = self.collection.find_one(
            filter={
                "_id": doc_id,
            },
            projection={
                "body_blob": 1,
            },
        )["data"]["document"]
        if item is not None:
            generations = _loads_generations(item["body_blob"])
            # this protects against malformed cached items:
            if generations is not None:
                return generations
            else:
                return None
        else:
            return None

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Update cache based on prompt and llm_string."""
        doc_id = self._make_id(prompt, llm_string)
        blob = _dumps_generations(return_val)
        self.collection.upsert(
            {
                "_id": doc_id,
                "body_blob": blob,
            },
        )

    def delete_through_llm(
        self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
    ) -> None:
        """
        A wrapper around `delete` with the LLM being passed.
        In case the llm(prompt) calls have a `stop` param, you should pass it here
        """
        llm_string = get_prompts(
            {**llm.dict(), **{"stop": stop}},
            [],
        )[1]
        return self.delete(prompt, llm_string=llm_string)

    def delete(self, prompt: str, llm_string: str) -> None:
        """Evict from cache if there's an entry."""
        doc_id = self._make_id(prompt, llm_string)
        return self.collection.delete_one(doc_id)

    def clear(self, **kwargs: Any) -> None:
        """Clear cache. This is for all LLMs at once."""
        self.astra_db.truncate_collection(self.collection_name)


ASTRA_DB_SEMANTIC_CACHE_DEFAULT_THRESHOLD = 0.85
ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME = "langchain_astradb_semantic_cache"
ASTRA_DB_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE = 16


class AstraDBSemanticCache(BaseCache):
    """
    Cache that uses Astra DB as a vector-store backend for semantic
    (i.e. similarity-based) lookup.

    It uses a single (vector) collection and can store
    cached values from several LLMs, so the LLM's 'llm_string' is stored
    in the document metadata.

    You can choose the preferred similarity (or use the API default) --
    remember the threshold might require metric-dependend tuning.
    """

    def __init__(
        self,
        *,
        collection_name: str = ASTRA_DB_CACHE_DEFAULT_COLLECTION_NAME,
        token: Optional[str] = None,
        api_endpoint: Optional[str] = None,
        astra_db_client: Optional[Any] = None,  # 'astrapy.db.AstraDB' if passed
        namespace: Optional[str] = None,
        embedding: Embeddings,
        metric: Optional[str] = None,
        similarity_threshold: float = ASTRA_DB_SEMANTIC_CACHE_DEFAULT_THRESHOLD,
    ):
        """
        Initialize the cache with all relevant parameters.
        Args:

            collection_name (str): name of the Astra DB collection to create/use.
            token (Optional[str]): API token for Astra DB usage.
            api_endpoint (Optional[str]): full URL to the API endpoint,
                such as "https://<DB-ID>-us-east1.apps.astra.datastax.com".
            astra_db_client (Optional[Any]): *alternative to token+api_endpoint*,
                you can pass an already-created 'astrapy.db.AstraDB' instance.
            namespace (Optional[str]): namespace (aka keyspace) where the
                collection is created. Defaults to the database's "default namespace".
            embedding (Embedding): Embedding provider for semantic
                encoding and search.
            metric: the function to use for evaluating similarity of text embeddings.
                Defaults to 'cosine' (alternatives: 'euclidean', 'dot_product')
            similarity_threshold (float, optional): the minimum similarity
                for accepting a (semantic-search) match.

        The default score threshold is tuned to the default metric.
        Tune it carefully yourself if switching to another distance metric.
        """
        try:
            from astrapy.db import (
                AstraDB as LibAstraDB,
            )
        except (ImportError, ModuleNotFoundError):
            raise ImportError(
                "Could not import a recent astrapy python package. "
                "Please install it with `pip install --upgrade astrapy`."
            )
        # Conflicting-arg checks:
        if astra_db_client is not None:
            if token is not None or api_endpoint is not None:
                raise ValueError(
                    "You cannot pass 'astra_db_client' to AstraDB if passing "
                    "'token' and 'api_endpoint'."
                )

        self.embedding = embedding
        self.metric = metric
        self.similarity_threshold = similarity_threshold

        # The contract for this class has separate lookup and update:
        # in order to spare some embedding calculations we cache them between
        # the two calls.
        # Note: each instance of this class has its own `_get_embedding` with
        # its own lru.
        @lru_cache(maxsize=ASTRA_DB_SEMANTIC_CACHE_EMBEDDING_CACHE_SIZE)
        def _cache_embedding(text: str) -> List[float]:
            return self.embedding.embed_query(text=text)

        self._get_embedding = _cache_embedding
        self.embedding_dimension = self._get_embedding_dimension()

        self.collection_name = collection_name
        self.token = token
        self.api_endpoint = api_endpoint
        self.namespace = namespace

        if astra_db_client is not None:
            self.astra_db = astra_db_client
        else:
            self.astra_db = LibAstraDB(
                token=self.token,
                api_endpoint=self.api_endpoint,
                namespace=self.namespace,
            )
        self.collection = self.astra_db.create_collection(
            collection_name=self.collection_name,
            dimension=self.embedding_dimension,
            metric=self.metric,
        )

    def _get_embedding_dimension(self) -> int:
        return len(self._get_embedding(text="This is a sample sentence."))

    @staticmethod
    def _make_id(prompt: str, llm_string: str) -> str:
        return f"{_hash(prompt)}#{_hash(llm_string)}"

    def update(self, prompt: str, llm_string: str, return_val: RETURN_VAL_TYPE) -> None:
        """Update cache based on prompt and llm_string."""
        doc_id = self._make_id(prompt, llm_string)
        llm_string_hash = _hash(llm_string)
        embedding_vector = self._get_embedding(text=prompt)
        body = _dumps_generations(return_val)
        #
        self.collection.upsert(
            {
                "_id": doc_id,
                "body_blob": body,
                "llm_string_hash": llm_string_hash,
                "$vector": embedding_vector,
            }
        )

    def lookup(self, prompt: str, llm_string: str) -> Optional[RETURN_VAL_TYPE]:
        """Look up based on prompt and llm_string."""
        hit_with_id = self.lookup_with_id(prompt, llm_string)
        if hit_with_id is not None:
            return hit_with_id[1]
        else:
            return None

    def lookup_with_id(
        self, prompt: str, llm_string: str
    ) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
        """
        Look up based on prompt and llm_string.
        If there are hits, return (document_id, cached_entry) for the top hit
        """
        prompt_embedding: List[float] = self._get_embedding(text=prompt)
        llm_string_hash = _hash(llm_string)

        hit = self.collection.vector_find_one(
            vector=prompt_embedding,
            filter={
                "llm_string_hash": llm_string_hash,
            },
            fields=["body_blob", "_id"],
            include_similarity=True,
        )

        if hit is None or hit["$similarity"] < self.similarity_threshold:
            return None
        else:
            generations = _loads_generations(hit["body_blob"])
            if generations is not None:
                # this protects against malformed cached items:
                return (hit["_id"], generations)
            else:
                return None

    def lookup_with_id_through_llm(
        self, prompt: str, llm: LLM, stop: Optional[List[str]] = None
    ) -> Optional[Tuple[str, RETURN_VAL_TYPE]]:
        llm_string = get_prompts(
            {**llm.dict(), **{"stop": stop}},
            [],
        )[1]
        return self.lookup_with_id(prompt, llm_string=llm_string)

    def delete_by_document_id(self, document_id: str) -> None:
        """
        Given this is a "similarity search" cache, an invalidation pattern
        that makes sense is first a lookup to get an ID, and then deleting
        with that ID. This is for the second step.
        """
        self.collection.delete_one(document_id)

    def clear(self, **kwargs: Any) -> None:
        """Clear the *whole* semantic cache."""
        self.astra_db.truncate_collection(self.collection_name)