File size: 8,558 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""Module implements an agent that uses OpenAI's APIs function enabled API."""
from typing import Any, List, Optional, Sequence, Tuple, Union

from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import (
    BaseMessage,
    SystemMessage,
)
from langchain_core.prompts import BasePromptTemplate
from langchain_core.prompts.chat import (
    BaseMessagePromptTemplate,
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    MessagesPlaceholder,
)
from langchain_core.pydantic_v1 import root_validator

from langchain.agents import BaseSingleActionAgent
from langchain.agents.format_scratchpad.openai_functions import (
    format_to_openai_function_messages,
)
from langchain.agents.output_parsers.openai_functions import (
    OpenAIFunctionsAgentOutputParser,
)
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import Callbacks
from langchain.chat_models.openai import ChatOpenAI
from langchain.tools.base import BaseTool
from langchain.tools.render import format_tool_to_openai_function


class OpenAIFunctionsAgent(BaseSingleActionAgent):
    """An Agent driven by OpenAIs function powered API.

    Args:
        llm: This should be an instance of ChatOpenAI, specifically a model
            that supports using `functions`.
        tools: The tools this agent has access to.
        prompt: The prompt for this agent, should support agent_scratchpad as one
            of the variables. For an easy way to construct this prompt, use
            `OpenAIFunctionsAgent.create_prompt(...)`
    """

    llm: BaseLanguageModel
    tools: Sequence[BaseTool]
    prompt: BasePromptTemplate

    def get_allowed_tools(self) -> List[str]:
        """Get allowed tools."""
        return [t.name for t in self.tools]

    @root_validator
    def validate_llm(cls, values: dict) -> dict:
        if not isinstance(values["llm"], ChatOpenAI):
            raise ValueError("Only supported with ChatOpenAI models.")
        return values

    @root_validator
    def validate_prompt(cls, values: dict) -> dict:
        prompt: BasePromptTemplate = values["prompt"]
        if "agent_scratchpad" not in prompt.input_variables:
            raise ValueError(
                "`agent_scratchpad` should be one of the variables in the prompt, "
                f"got {prompt.input_variables}"
            )
        return values

    @property
    def input_keys(self) -> List[str]:
        """Get input keys. Input refers to user input here."""
        return ["input"]

    @property
    def functions(self) -> List[dict]:
        return [dict(format_tool_to_openai_function(t)) for t in self.tools]

    def plan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        with_functions: bool = True,
        **kwargs: Any,
    ) -> Union[AgentAction, AgentFinish]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date, along with observations
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """
        agent_scratchpad = format_to_openai_function_messages(intermediate_steps)
        selected_inputs = {
            k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
        }
        full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
        prompt = self.prompt.format_prompt(**full_inputs)
        messages = prompt.to_messages()
        if with_functions:
            predicted_message = self.llm.predict_messages(
                messages,
                functions=self.functions,
                callbacks=callbacks,
            )
        else:
            predicted_message = self.llm.predict_messages(
                messages,
                callbacks=callbacks,
            )
        agent_decision = OpenAIFunctionsAgentOutputParser._parse_ai_message(
            predicted_message
        )
        return agent_decision

    async def aplan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[AgentAction, AgentFinish]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with observations
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """
        agent_scratchpad = format_to_openai_function_messages(intermediate_steps)
        selected_inputs = {
            k: kwargs[k] for k in self.prompt.input_variables if k != "agent_scratchpad"
        }
        full_inputs = dict(**selected_inputs, agent_scratchpad=agent_scratchpad)
        prompt = self.prompt.format_prompt(**full_inputs)
        messages = prompt.to_messages()
        predicted_message = await self.llm.apredict_messages(
            messages, functions=self.functions, callbacks=callbacks
        )
        agent_decision = OpenAIFunctionsAgentOutputParser._parse_ai_message(
            predicted_message
        )
        return agent_decision

    def return_stopped_response(
        self,
        early_stopping_method: str,
        intermediate_steps: List[Tuple[AgentAction, str]],
        **kwargs: Any,
    ) -> AgentFinish:
        """Return response when agent has been stopped due to max iterations."""
        if early_stopping_method == "force":
            # `force` just returns a constant string
            return AgentFinish(
                {"output": "Agent stopped due to iteration limit or time limit."}, ""
            )
        elif early_stopping_method == "generate":
            # Generate does one final forward pass
            agent_decision = self.plan(
                intermediate_steps, with_functions=False, **kwargs
            )
            if type(agent_decision) == AgentFinish:
                return agent_decision
            else:
                raise ValueError(
                    f"got AgentAction with no functions provided: {agent_decision}"
                )
        else:
            raise ValueError(
                "early_stopping_method should be one of `force` or `generate`, "
                f"got {early_stopping_method}"
            )

    @classmethod
    def create_prompt(
        cls,
        system_message: Optional[SystemMessage] = SystemMessage(
            content="You are a helpful AI assistant."
        ),
        extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
    ) -> BasePromptTemplate:
        """Create prompt for this agent.

        Args:
            system_message: Message to use as the system message that will be the
                first in the prompt.
            extra_prompt_messages: Prompt messages that will be placed between the
                system message and the new human input.

        Returns:
            A prompt template to pass into this agent.
        """
        _prompts = extra_prompt_messages or []
        messages: List[Union[BaseMessagePromptTemplate, BaseMessage]]
        if system_message:
            messages = [system_message]
        else:
            messages = []

        messages.extend(
            [
                *_prompts,
                HumanMessagePromptTemplate.from_template("{input}"),
                MessagesPlaceholder(variable_name="agent_scratchpad"),
            ]
        )
        return ChatPromptTemplate(messages=messages)

    @classmethod
    def from_llm_and_tools(
        cls,
        llm: BaseLanguageModel,
        tools: Sequence[BaseTool],
        callback_manager: Optional[BaseCallbackManager] = None,
        extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]] = None,
        system_message: Optional[SystemMessage] = SystemMessage(
            content="You are a helpful AI assistant."
        ),
        **kwargs: Any,
    ) -> BaseSingleActionAgent:
        """Construct an agent from an LLM and tools."""
        if not isinstance(llm, ChatOpenAI):
            raise ValueError("Only supported with ChatOpenAI models.")
        prompt = cls.create_prompt(
            extra_prompt_messages=extra_prompt_messages,
            system_message=system_message,
        )
        return cls(
            llm=llm,
            prompt=prompt,
            tools=tools,
            callback_manager=callback_manager,
            **kwargs,
        )