File size: 18,369 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
from __future__ import annotations

import logging
import time
from abc import ABC, abstractmethod
from asyncio import CancelledError
from functools import wraps
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    List,
    NoReturn,
    Optional,
    Tuple,
    Type,
    Union,
)

from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.load.dump import dumpd
from langchain_core.outputs import RunInfo
from langchain_core.utils.input import get_color_mapping

from langchain.callbacks.manager import (
    AsyncCallbackManager,
    AsyncCallbackManagerForChainRun,
    CallbackManager,
    CallbackManagerForChainRun,
    Callbacks,
)
from langchain.schema import RUN_KEY
from langchain.tools import BaseTool
from langchain.utilities.asyncio import asyncio_timeout

if TYPE_CHECKING:
    from langchain.agents.agent import AgentExecutor

logger = logging.getLogger(__name__)


class BaseAgentExecutorIterator(ABC):
    """Base class for AgentExecutorIterator."""

    @abstractmethod
    def build_callback_manager(self) -> None:
        pass


def rebuild_callback_manager_on_set(
    setter_method: Callable[..., None]
) -> Callable[..., None]:
    """Decorator to force setters to rebuild callback mgr"""

    @wraps(setter_method)
    def wrapper(self: BaseAgentExecutorIterator, *args: Any, **kwargs: Any) -> None:
        setter_method(self, *args, **kwargs)
        self.build_callback_manager()

    return wrapper


class AgentExecutorIterator(BaseAgentExecutorIterator):
    """Iterator for AgentExecutor."""

    def __init__(
        self,
        agent_executor: AgentExecutor,
        inputs: Any,
        callbacks: Callbacks = None,
        *,
        tags: Optional[list[str]] = None,
        include_run_info: bool = False,
        async_: bool = False,
    ):
        """
        Initialize the AgentExecutorIterator with the given AgentExecutor,
        inputs, and optional callbacks.
        """
        self._agent_executor = agent_executor
        self.inputs = inputs
        self.async_ = async_
        # build callback manager on tags setter
        self._callbacks = callbacks
        self.tags = tags
        self.include_run_info = include_run_info
        self.run_manager = None
        self.reset()

    _callback_manager: Union[AsyncCallbackManager, CallbackManager]
    _inputs: dict[str, str]
    _final_outputs: Optional[dict[str, str]]
    run_manager: Optional[
        Union[AsyncCallbackManagerForChainRun, CallbackManagerForChainRun]
    ]
    timeout_manager: Any  # TODO: Fix a type here; the shim makes it tricky.

    @property
    def inputs(self) -> dict[str, str]:
        return self._inputs

    @inputs.setter
    def inputs(self, inputs: Any) -> None:
        self._inputs = self.agent_executor.prep_inputs(inputs)

    @property
    def callbacks(self) -> Callbacks:
        return self._callbacks

    @callbacks.setter
    @rebuild_callback_manager_on_set
    def callbacks(self, callbacks: Callbacks) -> None:
        """When callbacks are changed after __init__, rebuild callback mgr"""
        self._callbacks = callbacks

    @property
    def tags(self) -> Optional[List[str]]:
        return self._tags

    @tags.setter
    @rebuild_callback_manager_on_set
    def tags(self, tags: Optional[List[str]]) -> None:
        """When tags are changed after __init__, rebuild callback mgr"""
        self._tags = tags

    @property
    def agent_executor(self) -> AgentExecutor:
        return self._agent_executor

    @agent_executor.setter
    @rebuild_callback_manager_on_set
    def agent_executor(self, agent_executor: AgentExecutor) -> None:
        self._agent_executor = agent_executor
        # force re-prep inputs in case agent_executor's prep_inputs fn changed
        self.inputs = self.inputs

    @property
    def callback_manager(self) -> Union[AsyncCallbackManager, CallbackManager]:
        return self._callback_manager

    def build_callback_manager(self) -> None:
        """
        Create and configure the callback manager based on the current
        callbacks and tags.
        """
        CallbackMgr: Union[Type[AsyncCallbackManager], Type[CallbackManager]] = (
            AsyncCallbackManager if self.async_ else CallbackManager
        )
        self._callback_manager = CallbackMgr.configure(
            self.callbacks,
            self.agent_executor.callbacks,
            self.agent_executor.verbose,
            self.tags,
            self.agent_executor.tags,
        )

    @property
    def name_to_tool_map(self) -> dict[str, BaseTool]:
        return {tool.name: tool for tool in self.agent_executor.tools}

    @property
    def color_mapping(self) -> dict[str, str]:
        return get_color_mapping(
            [tool.name for tool in self.agent_executor.tools],
            excluded_colors=["green", "red"],
        )

    def reset(self) -> None:
        """
        Reset the iterator to its initial state, clearing intermediate steps,
        iterations, and time elapsed.
        """
        logger.debug("(Re)setting AgentExecutorIterator to fresh state")
        self.intermediate_steps: list[tuple[AgentAction, str]] = []
        self.iterations = 0
        # maybe better to start these on the first __anext__ call?
        self.time_elapsed = 0.0
        self.start_time = time.time()
        self._final_outputs = None

    def update_iterations(self) -> None:
        """
        Increment the number of iterations and update the time elapsed.
        """
        self.iterations += 1
        self.time_elapsed = time.time() - self.start_time
        logger.debug(
            f"Agent Iterations: {self.iterations} ({self.time_elapsed:.2f}s elapsed)"
        )

    def raise_stopiteration(self, output: Any) -> NoReturn:
        """
        Raise a StopIteration exception with the given output.
        """
        logger.debug("Chain end: stop iteration")
        raise StopIteration(output)

    async def raise_stopasynciteration(self, output: Any) -> NoReturn:
        """
        Raise a StopAsyncIteration exception with the given output.
        Close the timeout context manager.
        """
        logger.debug("Chain end: stop async iteration")
        if self.timeout_manager is not None:
            await self.timeout_manager.__aexit__(None, None, None)
        raise StopAsyncIteration(output)

    @property
    def final_outputs(self) -> Optional[dict[str, Any]]:
        return self._final_outputs

    @final_outputs.setter
    def final_outputs(self, outputs: Optional[Dict[str, Any]]) -> None:
        # have access to intermediate steps by design in iterator,
        # so return only outputs may as well always be true.

        self._final_outputs = None
        if outputs:
            prepared_outputs: dict[str, Any] = self.agent_executor.prep_outputs(
                self.inputs, outputs, return_only_outputs=True
            )
            if self.include_run_info and self.run_manager is not None:
                logger.debug("Assign run key")
                prepared_outputs[RUN_KEY] = RunInfo(run_id=self.run_manager.run_id)
            self._final_outputs = prepared_outputs

    def __iter__(self: "AgentExecutorIterator") -> "AgentExecutorIterator":
        logger.debug("Initialising AgentExecutorIterator")
        self.reset()
        assert isinstance(self.callback_manager, CallbackManager)
        self.run_manager = self.callback_manager.on_chain_start(
            dumpd(self.agent_executor),
            self.inputs,
        )
        return self

    def __aiter__(self) -> "AgentExecutorIterator":
        """
        N.B. __aiter__ must be a normal method, so need to initialise async run manager
        on first __anext__ call where we can await it
        """
        logger.debug("Initialising AgentExecutorIterator (async)")
        self.reset()
        if self.agent_executor.max_execution_time:
            self.timeout_manager = asyncio_timeout(
                self.agent_executor.max_execution_time
            )
        else:
            self.timeout_manager = None
        return self

    def _on_first_step(self) -> None:
        """
        Perform any necessary setup for the first step of the synchronous iterator.
        """
        pass

    async def _on_first_async_step(self) -> None:
        """
        Perform any necessary setup for the first step of the asynchronous iterator.
        """
        # on first step, need to await callback manager and start async timeout ctxmgr
        if self.iterations == 0:
            assert isinstance(self.callback_manager, AsyncCallbackManager)
            self.run_manager = await self.callback_manager.on_chain_start(
                dumpd(self.agent_executor),
                self.inputs,
            )
            if self.timeout_manager:
                await self.timeout_manager.__aenter__()

    def __next__(self) -> dict[str, Any]:
        """
        AgentExecutor               AgentExecutorIterator
        __call__                    (__iter__ ->) __next__
            _call              <=>      _call_next
                _take_next_step             _take_next_step
        """
        # first step
        if self.iterations == 0:
            self._on_first_step()
        # N.B. timeout taken care of by "_should_continue" in sync case
        try:
            return self._call_next()
        except StopIteration:
            raise
        except BaseException as e:
            if self.run_manager:
                self.run_manager.on_chain_error(e)
            raise

    async def __anext__(self) -> dict[str, Any]:
        """
        AgentExecutor               AgentExecutorIterator
        acall                       (__aiter__ ->) __anext__
            _acall              <=>     _acall_next
                _atake_next_step            _atake_next_step
        """
        if self.iterations == 0:
            await self._on_first_async_step()
        try:
            return await self._acall_next()
        except StopAsyncIteration:
            raise
        except (TimeoutError, CancelledError):
            await self.timeout_manager.__aexit__(None, None, None)
            self.timeout_manager = None
            return await self._astop()
        except BaseException as e:
            if self.run_manager:
                assert isinstance(self.run_manager, AsyncCallbackManagerForChainRun)
                await self.run_manager.on_chain_error(e)
            raise

    def _execute_next_step(
        self, run_manager: Optional[CallbackManagerForChainRun]
    ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
        """
        Execute the next step in the chain using the
        AgentExecutor's _take_next_step method.
        """
        return self.agent_executor._take_next_step(
            self.name_to_tool_map,
            self.color_mapping,
            self.inputs,
            self.intermediate_steps,
            run_manager=run_manager,
        )

    async def _execute_next_async_step(
        self, run_manager: Optional[AsyncCallbackManagerForChainRun]
    ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
        """
        Execute the next step in the chain using the
        AgentExecutor's _atake_next_step method.
        """
        return await self.agent_executor._atake_next_step(
            self.name_to_tool_map,
            self.color_mapping,
            self.inputs,
            self.intermediate_steps,
            run_manager=run_manager,
        )

    def _process_next_step_output(
        self,
        next_step_output: Union[AgentFinish, List[Tuple[AgentAction, str]]],
        run_manager: Optional[CallbackManagerForChainRun],
    ) -> Dict[str, Union[str, List[Tuple[AgentAction, str]]]]:
        """
        Process the output of the next step,
        handling AgentFinish and tool return cases.
        """
        logger.debug("Processing output of Agent loop step")
        if isinstance(next_step_output, AgentFinish):
            logger.debug(
                "Hit AgentFinish: _return -> on_chain_end -> run final output logic"
            )
            output = self.agent_executor._return(
                next_step_output, self.intermediate_steps, run_manager=run_manager
            )
            if self.run_manager:
                self.run_manager.on_chain_end(output)
            self.final_outputs = output
            return output

        self.intermediate_steps.extend(next_step_output)
        logger.debug("Updated intermediate_steps with step output")

        # Check for tool return
        if len(next_step_output) == 1:
            next_step_action = next_step_output[0]
            tool_return = self.agent_executor._get_tool_return(next_step_action)
            if tool_return is not None:
                output = self.agent_executor._return(
                    tool_return, self.intermediate_steps, run_manager=run_manager
                )
                if self.run_manager:
                    self.run_manager.on_chain_end(output)
                self.final_outputs = output
                return output

        output = {"intermediate_step": next_step_output}
        return output

    async def _aprocess_next_step_output(
        self,
        next_step_output: Union[AgentFinish, List[Tuple[AgentAction, str]]],
        run_manager: Optional[AsyncCallbackManagerForChainRun],
    ) -> Dict[str, Union[str, List[Tuple[AgentAction, str]]]]:
        """
        Process the output of the next async step,
        handling AgentFinish and tool return cases.
        """
        logger.debug("Processing output of async Agent loop step")
        if isinstance(next_step_output, AgentFinish):
            logger.debug(
                "Hit AgentFinish: _areturn -> on_chain_end -> run final output logic"
            )
            output = await self.agent_executor._areturn(
                next_step_output, self.intermediate_steps, run_manager=run_manager
            )
            if run_manager:
                await run_manager.on_chain_end(output)
            self.final_outputs = output
            return output

        self.intermediate_steps.extend(next_step_output)
        logger.debug("Updated intermediate_steps with step output")

        # Check for tool return
        if len(next_step_output) == 1:
            next_step_action = next_step_output[0]
            tool_return = self.agent_executor._get_tool_return(next_step_action)
            if tool_return is not None:
                output = await self.agent_executor._areturn(
                    tool_return, self.intermediate_steps, run_manager=run_manager
                )
                if run_manager:
                    await run_manager.on_chain_end(output)
                self.final_outputs = output
                return output

        output = {"intermediate_step": next_step_output}
        return output

    def _stop(self) -> dict[str, Any]:
        """
        Stop the iterator and raise a StopIteration exception with the stopped response.
        """
        logger.warning("Stopping agent prematurely due to triggering stop condition")
        # this manually constructs agent finish with output key
        output = self.agent_executor.agent.return_stopped_response(
            self.agent_executor.early_stopping_method,
            self.intermediate_steps,
            **self.inputs,
        )
        assert (
            isinstance(self.run_manager, CallbackManagerForChainRun)
            or self.run_manager is None
        )
        returned_output = self.agent_executor._return(
            output, self.intermediate_steps, run_manager=self.run_manager
        )
        self.final_outputs = returned_output
        return returned_output

    async def _astop(self) -> dict[str, Any]:
        """
        Stop the async iterator and raise a StopAsyncIteration exception with
        the stopped response.
        """
        logger.warning("Stopping agent prematurely due to triggering stop condition")
        output = self.agent_executor.agent.return_stopped_response(
            self.agent_executor.early_stopping_method,
            self.intermediate_steps,
            **self.inputs,
        )
        assert (
            isinstance(self.run_manager, AsyncCallbackManagerForChainRun)
            or self.run_manager is None
        )
        returned_output = await self.agent_executor._areturn(
            output, self.intermediate_steps, run_manager=self.run_manager
        )
        self.final_outputs = returned_output
        return returned_output

    def _call_next(self) -> dict[str, Any]:
        """
        Perform a single iteration of the synchronous AgentExecutorIterator.
        """
        # final output already reached: stopiteration (final output)
        if self.final_outputs is not None:
            self.raise_stopiteration(self.final_outputs)
        # timeout/max iterations: stopiteration (stopped response)
        if not self.agent_executor._should_continue(self.iterations, self.time_elapsed):
            return self._stop()
        assert (
            isinstance(self.run_manager, CallbackManagerForChainRun)
            or self.run_manager is None
        )
        next_step_output = self._execute_next_step(self.run_manager)
        output = self._process_next_step_output(next_step_output, self.run_manager)
        self.update_iterations()
        return output

    async def _acall_next(self) -> dict[str, Any]:
        """
        Perform a single iteration of the asynchronous AgentExecutorIterator.
        """
        # final output already reached: stopiteration (final output)
        if self.final_outputs is not None:
            await self.raise_stopasynciteration(self.final_outputs)
        # timeout/max iterations: stopiteration (stopped response)
        if not self.agent_executor._should_continue(self.iterations, self.time_elapsed):
            return await self._astop()
        assert (
            isinstance(self.run_manager, AsyncCallbackManagerForChainRun)
            or self.run_manager is None
        )
        next_step_output = await self._execute_next_async_step(self.run_manager)
        output = await self._aprocess_next_step_output(
            next_step_output, self.run_manager
        )
        self.update_iterations()
        return output