File size: 47,941 Bytes
129cd69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
"""Chain that takes in an input and produces an action and action input."""
from __future__ import annotations

import asyncio
import json
import logging
import time
from abc import abstractmethod
from pathlib import Path
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Optional,
    Sequence,
    Tuple,
    Union,
)

import yaml
from langchain_core.agents import (
    AgentAction,
    AgentFinish,
)
from langchain_core.exceptions import (
    OutputParserException,
)
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import BaseMessage
from langchain_core.output_parsers import (
    BaseOutputParser,
)
from langchain_core.prompts import (
    BasePromptTemplate,
)
from langchain_core.prompts.few_shot import FewShotPromptTemplate
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, root_validator
from langchain_core.runnables import Runnable
from langchain_core.utils.input import get_color_mapping

from langchain.agents.agent_iterator import AgentExecutorIterator
from langchain.agents.agent_types import AgentType
from langchain.agents.tools import InvalidTool
from langchain.callbacks.base import BaseCallbackManager
from langchain.callbacks.manager import (
    AsyncCallbackManagerForChainRun,
    AsyncCallbackManagerForToolRun,
    CallbackManagerForChainRun,
    CallbackManagerForToolRun,
    Callbacks,
)
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.tools.base import BaseTool
from langchain.utilities.asyncio import asyncio_timeout

logger = logging.getLogger(__name__)


class BaseSingleActionAgent(BaseModel):
    """Base Single Action Agent class."""

    @property
    def return_values(self) -> List[str]:
        """Return values of the agent."""
        return ["output"]

    def get_allowed_tools(self) -> Optional[List[str]]:
        return None

    @abstractmethod
    def plan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[AgentAction, AgentFinish]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with observations
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """

    @abstractmethod
    async def aplan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[AgentAction, AgentFinish]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with observations
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """

    @property
    @abstractmethod
    def input_keys(self) -> List[str]:
        """Return the input keys.

        :meta private:
        """

    def return_stopped_response(
        self,
        early_stopping_method: str,
        intermediate_steps: List[Tuple[AgentAction, str]],
        **kwargs: Any,
    ) -> AgentFinish:
        """Return response when agent has been stopped due to max iterations."""
        if early_stopping_method == "force":
            # `force` just returns a constant string
            return AgentFinish(
                {"output": "Agent stopped due to iteration limit or time limit."}, ""
            )
        else:
            raise ValueError(
                f"Got unsupported early_stopping_method `{early_stopping_method}`"
            )

    @classmethod
    def from_llm_and_tools(
        cls,
        llm: BaseLanguageModel,
        tools: Sequence[BaseTool],
        callback_manager: Optional[BaseCallbackManager] = None,
        **kwargs: Any,
    ) -> BaseSingleActionAgent:
        raise NotImplementedError

    @property
    def _agent_type(self) -> str:
        """Return Identifier of agent type."""
        raise NotImplementedError

    def dict(self, **kwargs: Any) -> Dict:
        """Return dictionary representation of agent."""
        _dict = super().dict()
        try:
            _type = self._agent_type
        except NotImplementedError:
            _type = None
        if isinstance(_type, AgentType):
            _dict["_type"] = str(_type.value)
        elif _type is not None:
            _dict["_type"] = _type
        return _dict

    def save(self, file_path: Union[Path, str]) -> None:
        """Save the agent.

        Args:
            file_path: Path to file to save the agent to.

        Example:
        .. code-block:: python

            # If working with agent executor
            agent.agent.save(file_path="path/agent.yaml")
        """
        # Convert file to Path object.
        if isinstance(file_path, str):
            save_path = Path(file_path)
        else:
            save_path = file_path

        directory_path = save_path.parent
        directory_path.mkdir(parents=True, exist_ok=True)

        # Fetch dictionary to save
        agent_dict = self.dict()
        if "_type" not in agent_dict:
            raise NotImplementedError(f"Agent {self} does not support saving")

        if save_path.suffix == ".json":
            with open(file_path, "w") as f:
                json.dump(agent_dict, f, indent=4)
        elif save_path.suffix == ".yaml":
            with open(file_path, "w") as f:
                yaml.dump(agent_dict, f, default_flow_style=False)
        else:
            raise ValueError(f"{save_path} must be json or yaml")

    def tool_run_logging_kwargs(self) -> Dict:
        return {}


class BaseMultiActionAgent(BaseModel):
    """Base Multi Action Agent class."""

    @property
    def return_values(self) -> List[str]:
        """Return values of the agent."""
        return ["output"]

    def get_allowed_tools(self) -> Optional[List[str]]:
        return None

    @abstractmethod
    def plan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[List[AgentAction], AgentFinish]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with the observations.
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Actions specifying what tool to use.
        """

    @abstractmethod
    async def aplan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[List[AgentAction], AgentFinish]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with the observations.
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Actions specifying what tool to use.
        """

    @property
    @abstractmethod
    def input_keys(self) -> List[str]:
        """Return the input keys.

        :meta private:
        """

    def return_stopped_response(
        self,
        early_stopping_method: str,
        intermediate_steps: List[Tuple[AgentAction, str]],
        **kwargs: Any,
    ) -> AgentFinish:
        """Return response when agent has been stopped due to max iterations."""
        if early_stopping_method == "force":
            # `force` just returns a constant string
            return AgentFinish({"output": "Agent stopped due to max iterations."}, "")
        else:
            raise ValueError(
                f"Got unsupported early_stopping_method `{early_stopping_method}`"
            )

    @property
    def _agent_type(self) -> str:
        """Return Identifier of agent type."""
        raise NotImplementedError

    def dict(self, **kwargs: Any) -> Dict:
        """Return dictionary representation of agent."""
        _dict = super().dict()
        try:
            _dict["_type"] = str(self._agent_type)
        except NotImplementedError:
            pass
        return _dict

    def save(self, file_path: Union[Path, str]) -> None:
        """Save the agent.

        Args:
            file_path: Path to file to save the agent to.

        Example:
        .. code-block:: python

            # If working with agent executor
            agent.agent.save(file_path="path/agent.yaml")
        """
        # Convert file to Path object.
        if isinstance(file_path, str):
            save_path = Path(file_path)
        else:
            save_path = file_path

        # Fetch dictionary to save
        agent_dict = self.dict()
        if "_type" not in agent_dict:
            raise NotImplementedError(f"Agent {self} does not support saving.")

        directory_path = save_path.parent
        directory_path.mkdir(parents=True, exist_ok=True)

        if save_path.suffix == ".json":
            with open(file_path, "w") as f:
                json.dump(agent_dict, f, indent=4)
        elif save_path.suffix == ".yaml":
            with open(file_path, "w") as f:
                yaml.dump(agent_dict, f, default_flow_style=False)
        else:
            raise ValueError(f"{save_path} must be json or yaml")

    def tool_run_logging_kwargs(self) -> Dict:
        return {}


class AgentOutputParser(BaseOutputParser[Union[AgentAction, AgentFinish]]):
    """Base class for parsing agent output into agent action/finish."""

    @abstractmethod
    def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
        """Parse text into agent action/finish."""


class MultiActionAgentOutputParser(
    BaseOutputParser[Union[List[AgentAction], AgentFinish]]
):
    """Base class for parsing agent output into agent actions/finish."""

    @abstractmethod
    def parse(self, text: str) -> Union[List[AgentAction], AgentFinish]:
        """Parse text into agent actions/finish."""


class RunnableAgent(BaseSingleActionAgent):
    """Agent powered by runnables."""

    runnable: Runnable[dict, Union[AgentAction, AgentFinish]]
    """Runnable to call to get agent action."""
    _input_keys: List[str] = []
    """Input keys."""

    class Config:
        """Configuration for this pydantic object."""

        arbitrary_types_allowed = True

    @property
    def return_values(self) -> List[str]:
        """Return values of the agent."""
        return []

    @property
    def input_keys(self) -> List[str]:
        """Return the input keys.

        Returns:
            List of input keys.
        """
        return self._input_keys

    def plan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[AgentAction, AgentFinish]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with the observations.
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """
        inputs = {**kwargs, **{"intermediate_steps": intermediate_steps}}
        output = self.runnable.invoke(inputs, config={"callbacks": callbacks})
        return output

    async def aplan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[
        AgentAction,
        AgentFinish,
    ]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with observations
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """
        inputs = {**kwargs, **{"intermediate_steps": intermediate_steps}}
        output = await self.runnable.ainvoke(inputs, config={"callbacks": callbacks})
        return output


class RunnableMultiActionAgent(BaseMultiActionAgent):
    """Agent powered by runnables."""

    runnable: Runnable[dict, Union[List[AgentAction], AgentFinish]]
    """Runnable to call to get agent actions."""
    _input_keys: List[str] = []
    """Input keys."""

    class Config:
        """Configuration for this pydantic object."""

        arbitrary_types_allowed = True

    @property
    def return_values(self) -> List[str]:
        """Return values of the agent."""
        return []

    @property
    def input_keys(self) -> List[str]:
        """Return the input keys.

        Returns:
            List of input keys.
        """
        return self._input_keys

    def plan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[
        List[AgentAction],
        AgentFinish,
    ]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with the observations.
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """
        inputs = {**kwargs, **{"intermediate_steps": intermediate_steps}}
        output = self.runnable.invoke(inputs, config={"callbacks": callbacks})
        return output

    async def aplan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[
        List[AgentAction],
        AgentFinish,
    ]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with observations
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """
        inputs = {**kwargs, **{"intermediate_steps": intermediate_steps}}
        output = await self.runnable.ainvoke(inputs, config={"callbacks": callbacks})
        return output


class LLMSingleActionAgent(BaseSingleActionAgent):
    """Base class for single action agents."""

    llm_chain: LLMChain
    """LLMChain to use for agent."""
    output_parser: AgentOutputParser
    """Output parser to use for agent."""
    stop: List[str]
    """List of strings to stop on."""

    @property
    def input_keys(self) -> List[str]:
        """Return the input keys.

        Returns:
            List of input keys.
        """
        return list(set(self.llm_chain.input_keys) - {"intermediate_steps"})

    def dict(self, **kwargs: Any) -> Dict:
        """Return dictionary representation of agent."""
        _dict = super().dict()
        del _dict["output_parser"]
        return _dict

    def plan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[AgentAction, AgentFinish]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with the observations.
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """
        output = self.llm_chain.run(
            intermediate_steps=intermediate_steps,
            stop=self.stop,
            callbacks=callbacks,
            **kwargs,
        )
        return self.output_parser.parse(output)

    async def aplan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[AgentAction, AgentFinish]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with observations
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """
        output = await self.llm_chain.arun(
            intermediate_steps=intermediate_steps,
            stop=self.stop,
            callbacks=callbacks,
            **kwargs,
        )
        return self.output_parser.parse(output)

    def tool_run_logging_kwargs(self) -> Dict:
        return {
            "llm_prefix": "",
            "observation_prefix": "" if len(self.stop) == 0 else self.stop[0],
        }


class Agent(BaseSingleActionAgent):
    """Agent that calls the language model and deciding the action.

    This is driven by an LLMChain. The prompt in the LLMChain MUST include
    a variable called "agent_scratchpad" where the agent can put its
    intermediary work.
    """

    llm_chain: LLMChain
    output_parser: AgentOutputParser
    allowed_tools: Optional[List[str]] = None

    def dict(self, **kwargs: Any) -> Dict:
        """Return dictionary representation of agent."""
        _dict = super().dict()
        del _dict["output_parser"]
        return _dict

    def get_allowed_tools(self) -> Optional[List[str]]:
        return self.allowed_tools

    @property
    def return_values(self) -> List[str]:
        return ["output"]

    def _fix_text(self, text: str) -> str:
        """Fix the text."""
        raise ValueError("fix_text not implemented for this agent.")

    @property
    def _stop(self) -> List[str]:
        return [
            f"\n{self.observation_prefix.rstrip()}",
            f"\n\t{self.observation_prefix.rstrip()}",
        ]

    def _construct_scratchpad(
        self, intermediate_steps: List[Tuple[AgentAction, str]]
    ) -> Union[str, List[BaseMessage]]:
        """Construct the scratchpad that lets the agent continue its thought process."""
        thoughts = ""
        for action, observation in intermediate_steps:
            thoughts += action.log
            thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
        return thoughts

    def plan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[AgentAction, AgentFinish]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with observations
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """
        full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
        full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs)
        return self.output_parser.parse(full_output)

    async def aplan(
        self,
        intermediate_steps: List[Tuple[AgentAction, str]],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> Union[AgentAction, AgentFinish]:
        """Given input, decided what to do.

        Args:
            intermediate_steps: Steps the LLM has taken to date,
                along with observations
            callbacks: Callbacks to run.
            **kwargs: User inputs.

        Returns:
            Action specifying what tool to use.
        """
        full_inputs = self.get_full_inputs(intermediate_steps, **kwargs)
        full_output = await self.llm_chain.apredict(callbacks=callbacks, **full_inputs)
        agent_output = await self.output_parser.aparse(full_output)
        return agent_output

    def get_full_inputs(
        self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
    ) -> Dict[str, Any]:
        """Create the full inputs for the LLMChain from intermediate steps."""
        thoughts = self._construct_scratchpad(intermediate_steps)
        new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop}
        full_inputs = {**kwargs, **new_inputs}
        return full_inputs

    @property
    def input_keys(self) -> List[str]:
        """Return the input keys.

        :meta private:
        """
        return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"})

    @root_validator()
    def validate_prompt(cls, values: Dict) -> Dict:
        """Validate that prompt matches format."""
        prompt = values["llm_chain"].prompt
        if "agent_scratchpad" not in prompt.input_variables:
            logger.warning(
                "`agent_scratchpad` should be a variable in prompt.input_variables."
                " Did not find it, so adding it at the end."
            )
            prompt.input_variables.append("agent_scratchpad")
            if isinstance(prompt, PromptTemplate):
                prompt.template += "\n{agent_scratchpad}"
            elif isinstance(prompt, FewShotPromptTemplate):
                prompt.suffix += "\n{agent_scratchpad}"
            else:
                raise ValueError(f"Got unexpected prompt type {type(prompt)}")
        return values

    @property
    @abstractmethod
    def observation_prefix(self) -> str:
        """Prefix to append the observation with."""

    @property
    @abstractmethod
    def llm_prefix(self) -> str:
        """Prefix to append the LLM call with."""

    @classmethod
    @abstractmethod
    def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate:
        """Create a prompt for this class."""

    @classmethod
    def _validate_tools(cls, tools: Sequence[BaseTool]) -> None:
        """Validate that appropriate tools are passed in."""
        pass

    @classmethod
    @abstractmethod
    def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser:
        """Get default output parser for this class."""

    @classmethod
    def from_llm_and_tools(
        cls,
        llm: BaseLanguageModel,
        tools: Sequence[BaseTool],
        callback_manager: Optional[BaseCallbackManager] = None,
        output_parser: Optional[AgentOutputParser] = None,
        **kwargs: Any,
    ) -> Agent:
        """Construct an agent from an LLM and tools."""
        cls._validate_tools(tools)
        llm_chain = LLMChain(
            llm=llm,
            prompt=cls.create_prompt(tools),
            callback_manager=callback_manager,
        )
        tool_names = [tool.name for tool in tools]
        _output_parser = output_parser or cls._get_default_output_parser()
        return cls(
            llm_chain=llm_chain,
            allowed_tools=tool_names,
            output_parser=_output_parser,
            **kwargs,
        )

    def return_stopped_response(
        self,
        early_stopping_method: str,
        intermediate_steps: List[Tuple[AgentAction, str]],
        **kwargs: Any,
    ) -> AgentFinish:
        """Return response when agent has been stopped due to max iterations."""
        if early_stopping_method == "force":
            # `force` just returns a constant string
            return AgentFinish(
                {"output": "Agent stopped due to iteration limit or time limit."}, ""
            )
        elif early_stopping_method == "generate":
            # Generate does one final forward pass
            thoughts = ""
            for action, observation in intermediate_steps:
                thoughts += action.log
                thoughts += (
                    f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}"
                )
            # Adding to the previous steps, we now tell the LLM to make a final pred
            thoughts += (
                "\n\nI now need to return a final answer based on the previous steps:"
            )
            new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop}
            full_inputs = {**kwargs, **new_inputs}
            full_output = self.llm_chain.predict(**full_inputs)
            # We try to extract a final answer
            parsed_output = self.output_parser.parse(full_output)
            if isinstance(parsed_output, AgentFinish):
                # If we can extract, we send the correct stuff
                return parsed_output
            else:
                # If we can extract, but the tool is not the final tool,
                # we just return the full output
                return AgentFinish({"output": full_output}, full_output)
        else:
            raise ValueError(
                "early_stopping_method should be one of `force` or `generate`, "
                f"got {early_stopping_method}"
            )

    def tool_run_logging_kwargs(self) -> Dict:
        return {
            "llm_prefix": self.llm_prefix,
            "observation_prefix": self.observation_prefix,
        }


class ExceptionTool(BaseTool):
    """Tool that just returns the query."""

    name: str = "_Exception"
    """Name of the tool."""
    description: str = "Exception tool"
    """Description of the tool."""

    def _run(
        self,
        query: str,
        run_manager: Optional[CallbackManagerForToolRun] = None,
    ) -> str:
        return query

    async def _arun(
        self,
        query: str,
        run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
    ) -> str:
        return query


class AgentExecutor(Chain):
    """Agent that is using tools."""

    agent: Union[BaseSingleActionAgent, BaseMultiActionAgent]
    """The agent to run for creating a plan and determining actions
    to take at each step of the execution loop."""
    tools: Sequence[BaseTool]
    """The valid tools the agent can call."""
    return_intermediate_steps: bool = False
    """Whether to return the agent's trajectory of intermediate steps
    at the end in addition to the final output."""
    max_iterations: Optional[int] = 15
    """The maximum number of steps to take before ending the execution
    loop.
    
    Setting to 'None' could lead to an infinite loop."""
    max_execution_time: Optional[float] = None
    """The maximum amount of wall clock time to spend in the execution
    loop.
    """
    early_stopping_method: str = "force"
    """The method to use for early stopping if the agent never
    returns `AgentFinish`. Either 'force' or 'generate'.

    `"force"` returns a string saying that it stopped because it met a
        time or iteration limit.
    
    `"generate"` calls the agent's LLM Chain one final time to generate
        a final answer based on the previous steps.
    """
    handle_parsing_errors: Union[
        bool, str, Callable[[OutputParserException], str]
    ] = False
    """How to handle errors raised by the agent's output parser.
    Defaults to `False`, which raises the error.
    If `true`, the error will be sent back to the LLM as an observation.
    If a string, the string itself will be sent to the LLM as an observation.
    If a callable function, the function will be called with the exception
     as an argument, and the result of that function will be passed to the agent
      as an observation.
    """
    trim_intermediate_steps: Union[
        int, Callable[[List[Tuple[AgentAction, str]]], List[Tuple[AgentAction, str]]]
    ] = -1

    @classmethod
    def from_agent_and_tools(
        cls,
        agent: Union[BaseSingleActionAgent, BaseMultiActionAgent],
        tools: Sequence[BaseTool],
        callbacks: Callbacks = None,
        **kwargs: Any,
    ) -> AgentExecutor:
        """Create from agent and tools."""
        return cls(
            agent=agent,
            tools=tools,
            callbacks=callbacks,
            **kwargs,
        )

    @root_validator()
    def validate_tools(cls, values: Dict) -> Dict:
        """Validate that tools are compatible with agent."""
        agent = values["agent"]
        tools = values["tools"]
        allowed_tools = agent.get_allowed_tools()
        if allowed_tools is not None:
            if set(allowed_tools) != set([tool.name for tool in tools]):
                raise ValueError(
                    f"Allowed tools ({allowed_tools}) different than "
                    f"provided tools ({[tool.name for tool in tools]})"
                )
        return values

    @root_validator()
    def validate_return_direct_tool(cls, values: Dict) -> Dict:
        """Validate that tools are compatible with agent."""
        agent = values["agent"]
        tools = values["tools"]
        if isinstance(agent, BaseMultiActionAgent):
            for tool in tools:
                if tool.return_direct:
                    raise ValueError(
                        "Tools that have `return_direct=True` are not allowed "
                        "in multi-action agents"
                    )
        return values

    @root_validator(pre=True)
    def validate_runnable_agent(cls, values: Dict) -> Dict:
        """Convert runnable to agent if passed in."""
        agent = values["agent"]
        if isinstance(agent, Runnable):
            try:
                output_type = agent.OutputType
            except Exception as _:
                multi_action = False
            else:
                multi_action = output_type == Union[List[AgentAction], AgentFinish]

            if multi_action:
                values["agent"] = RunnableMultiActionAgent(runnable=agent)
            else:
                values["agent"] = RunnableAgent(runnable=agent)
        return values

    def save(self, file_path: Union[Path, str]) -> None:
        """Raise error - saving not supported for Agent Executors."""
        raise ValueError(
            "Saving not supported for agent executors. "
            "If you are trying to save the agent, please use the "
            "`.save_agent(...)`"
        )

    def save_agent(self, file_path: Union[Path, str]) -> None:
        """Save the underlying agent."""
        return self.agent.save(file_path)

    def iter(
        self,
        inputs: Any,
        callbacks: Callbacks = None,
        *,
        include_run_info: bool = False,
        async_: bool = False,
    ) -> AgentExecutorIterator:
        """Enables iteration over steps taken to reach final output."""
        return AgentExecutorIterator(
            self,
            inputs,
            callbacks,
            tags=self.tags,
            include_run_info=include_run_info,
            async_=async_,
        )

    @property
    def input_keys(self) -> List[str]:
        """Return the input keys.

        :meta private:
        """
        return self.agent.input_keys

    @property
    def output_keys(self) -> List[str]:
        """Return the singular output key.

        :meta private:
        """
        if self.return_intermediate_steps:
            return self.agent.return_values + ["intermediate_steps"]
        else:
            return self.agent.return_values

    def lookup_tool(self, name: str) -> BaseTool:
        """Lookup tool by name."""
        return {tool.name: tool for tool in self.tools}[name]

    def _should_continue(self, iterations: int, time_elapsed: float) -> bool:
        if self.max_iterations is not None and iterations >= self.max_iterations:
            return False
        if (
            self.max_execution_time is not None
            and time_elapsed >= self.max_execution_time
        ):
            return False

        return True

    def _return(
        self,
        output: AgentFinish,
        intermediate_steps: list,
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        if run_manager:
            run_manager.on_agent_finish(output, color="green", verbose=self.verbose)
        final_output = output.return_values
        if self.return_intermediate_steps:
            final_output["intermediate_steps"] = intermediate_steps
        return final_output

    async def _areturn(
        self,
        output: AgentFinish,
        intermediate_steps: list,
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        if run_manager:
            await run_manager.on_agent_finish(
                output, color="green", verbose=self.verbose
            )
        final_output = output.return_values
        if self.return_intermediate_steps:
            final_output["intermediate_steps"] = intermediate_steps
        return final_output

    def _take_next_step(
        self,
        name_to_tool_map: Dict[str, BaseTool],
        color_mapping: Dict[str, str],
        inputs: Dict[str, str],
        intermediate_steps: List[Tuple[AgentAction, str]],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
        """Take a single step in the thought-action-observation loop.

        Override this to take control of how the agent makes and acts on choices.
        """
        try:
            intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)

            # Call the LLM to see what to do.
            output = self.agent.plan(
                intermediate_steps,
                callbacks=run_manager.get_child() if run_manager else None,
                **inputs,
            )
        except OutputParserException as e:
            if isinstance(self.handle_parsing_errors, bool):
                raise_error = not self.handle_parsing_errors
            else:
                raise_error = False
            if raise_error:
                raise ValueError(
                    "An output parsing error occurred. "
                    "In order to pass this error back to the agent and have it try "
                    "again, pass `handle_parsing_errors=True` to the AgentExecutor. "
                    f"This is the error: {str(e)}"
                )
            text = str(e)
            if isinstance(self.handle_parsing_errors, bool):
                if e.send_to_llm:
                    observation = str(e.observation)
                    text = str(e.llm_output)
                else:
                    observation = "Invalid or incomplete response"
            elif isinstance(self.handle_parsing_errors, str):
                observation = self.handle_parsing_errors
            elif callable(self.handle_parsing_errors):
                observation = self.handle_parsing_errors(e)
            else:
                raise ValueError("Got unexpected type of `handle_parsing_errors`")
            output = AgentAction("_Exception", observation, text)
            if run_manager:
                run_manager.on_agent_action(output, color="green")
            tool_run_kwargs = self.agent.tool_run_logging_kwargs()
            observation = ExceptionTool().run(
                output.tool_input,
                verbose=self.verbose,
                color=None,
                callbacks=run_manager.get_child() if run_manager else None,
                **tool_run_kwargs,
            )
            return [(output, observation)]
        # If the tool chosen is the finishing tool, then we end and return.
        if isinstance(output, AgentFinish):
            return output
        actions: List[AgentAction]
        if isinstance(output, AgentAction):
            actions = [output]
        else:
            actions = output
        result = []
        for agent_action in actions:
            if run_manager:
                run_manager.on_agent_action(agent_action, color="green")
            # Otherwise we lookup the tool
            if agent_action.tool in name_to_tool_map:
                tool = name_to_tool_map[agent_action.tool]
                return_direct = tool.return_direct
                color = color_mapping[agent_action.tool]
                tool_run_kwargs = self.agent.tool_run_logging_kwargs()
                if return_direct:
                    tool_run_kwargs["llm_prefix"] = ""
                # We then call the tool on the tool input to get an observation
                observation = tool.run(
                    agent_action.tool_input,
                    verbose=self.verbose,
                    color=color,
                    callbacks=run_manager.get_child() if run_manager else None,
                    **tool_run_kwargs,
                )
            else:
                tool_run_kwargs = self.agent.tool_run_logging_kwargs()
                observation = InvalidTool().run(
                    {
                        "requested_tool_name": agent_action.tool,
                        "available_tool_names": list(name_to_tool_map.keys()),
                    },
                    verbose=self.verbose,
                    color=None,
                    callbacks=run_manager.get_child() if run_manager else None,
                    **tool_run_kwargs,
                )
            result.append((agent_action, observation))
        return result

    async def _atake_next_step(
        self,
        name_to_tool_map: Dict[str, BaseTool],
        color_mapping: Dict[str, str],
        inputs: Dict[str, str],
        intermediate_steps: List[Tuple[AgentAction, str]],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
        """Take a single step in the thought-action-observation loop.

        Override this to take control of how the agent makes and acts on choices.
        """
        try:
            intermediate_steps = self._prepare_intermediate_steps(intermediate_steps)

            # Call the LLM to see what to do.
            output = await self.agent.aplan(
                intermediate_steps,
                callbacks=run_manager.get_child() if run_manager else None,
                **inputs,
            )
        except OutputParserException as e:
            if isinstance(self.handle_parsing_errors, bool):
                raise_error = not self.handle_parsing_errors
            else:
                raise_error = False
            if raise_error:
                raise ValueError(
                    "An output parsing error occurred. "
                    "In order to pass this error back to the agent and have it try "
                    "again, pass `handle_parsing_errors=True` to the AgentExecutor. "
                    f"This is the error: {str(e)}"
                )
            text = str(e)
            if isinstance(self.handle_parsing_errors, bool):
                if e.send_to_llm:
                    observation = str(e.observation)
                    text = str(e.llm_output)
                else:
                    observation = "Invalid or incomplete response"
            elif isinstance(self.handle_parsing_errors, str):
                observation = self.handle_parsing_errors
            elif callable(self.handle_parsing_errors):
                observation = self.handle_parsing_errors(e)
            else:
                raise ValueError("Got unexpected type of `handle_parsing_errors`")
            output = AgentAction("_Exception", observation, text)
            tool_run_kwargs = self.agent.tool_run_logging_kwargs()
            observation = await ExceptionTool().arun(
                output.tool_input,
                verbose=self.verbose,
                color=None,
                callbacks=run_manager.get_child() if run_manager else None,
                **tool_run_kwargs,
            )
            return [(output, observation)]
        # If the tool chosen is the finishing tool, then we end and return.
        if isinstance(output, AgentFinish):
            return output
        actions: List[AgentAction]
        if isinstance(output, AgentAction):
            actions = [output]
        else:
            actions = output

        async def _aperform_agent_action(
            agent_action: AgentAction,
        ) -> Tuple[AgentAction, str]:
            if run_manager:
                await run_manager.on_agent_action(
                    agent_action, verbose=self.verbose, color="green"
                )
            # Otherwise we lookup the tool
            if agent_action.tool in name_to_tool_map:
                tool = name_to_tool_map[agent_action.tool]
                return_direct = tool.return_direct
                color = color_mapping[agent_action.tool]
                tool_run_kwargs = self.agent.tool_run_logging_kwargs()
                if return_direct:
                    tool_run_kwargs["llm_prefix"] = ""
                # We then call the tool on the tool input to get an observation
                observation = await tool.arun(
                    agent_action.tool_input,
                    verbose=self.verbose,
                    color=color,
                    callbacks=run_manager.get_child() if run_manager else None,
                    **tool_run_kwargs,
                )
            else:
                tool_run_kwargs = self.agent.tool_run_logging_kwargs()
                observation = await InvalidTool().arun(
                    {
                        "requested_tool_name": agent_action.tool,
                        "available_tool_names": list(name_to_tool_map.keys()),
                    },
                    verbose=self.verbose,
                    color=None,
                    callbacks=run_manager.get_child() if run_manager else None,
                    **tool_run_kwargs,
                )
            return agent_action, observation

        # Use asyncio.gather to run multiple tool.arun() calls concurrently
        result = await asyncio.gather(
            *[_aperform_agent_action(agent_action) for agent_action in actions]
        )

        return list(result)

    def _call(
        self,
        inputs: Dict[str, str],
        run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, Any]:
        """Run text through and get agent response."""
        # Construct a mapping of tool name to tool for easy lookup
        name_to_tool_map = {tool.name: tool for tool in self.tools}
        # We construct a mapping from each tool to a color, used for logging.
        color_mapping = get_color_mapping(
            [tool.name for tool in self.tools], excluded_colors=["green", "red"]
        )
        intermediate_steps: List[Tuple[AgentAction, str]] = []
        # Let's start tracking the number of iterations and time elapsed
        iterations = 0
        time_elapsed = 0.0
        start_time = time.time()
        # We now enter the agent loop (until it returns something).
        while self._should_continue(iterations, time_elapsed):
            next_step_output = self._take_next_step(
                name_to_tool_map,
                color_mapping,
                inputs,
                intermediate_steps,
                run_manager=run_manager,
            )
            if isinstance(next_step_output, AgentFinish):
                return self._return(
                    next_step_output, intermediate_steps, run_manager=run_manager
                )

            intermediate_steps.extend(next_step_output)
            if len(next_step_output) == 1:
                next_step_action = next_step_output[0]
                # See if tool should return directly
                tool_return = self._get_tool_return(next_step_action)
                if tool_return is not None:
                    return self._return(
                        tool_return, intermediate_steps, run_manager=run_manager
                    )
            iterations += 1
            time_elapsed = time.time() - start_time
        output = self.agent.return_stopped_response(
            self.early_stopping_method, intermediate_steps, **inputs
        )
        return self._return(output, intermediate_steps, run_manager=run_manager)

    async def _acall(
        self,
        inputs: Dict[str, str],
        run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, str]:
        """Run text through and get agent response."""
        # Construct a mapping of tool name to tool for easy lookup
        name_to_tool_map = {tool.name: tool for tool in self.tools}
        # We construct a mapping from each tool to a color, used for logging.
        color_mapping = get_color_mapping(
            [tool.name for tool in self.tools], excluded_colors=["green"]
        )
        intermediate_steps: List[Tuple[AgentAction, str]] = []
        # Let's start tracking the number of iterations and time elapsed
        iterations = 0
        time_elapsed = 0.0
        start_time = time.time()
        # We now enter the agent loop (until it returns something).
        async with asyncio_timeout(self.max_execution_time):
            try:
                while self._should_continue(iterations, time_elapsed):
                    next_step_output = await self._atake_next_step(
                        name_to_tool_map,
                        color_mapping,
                        inputs,
                        intermediate_steps,
                        run_manager=run_manager,
                    )
                    if isinstance(next_step_output, AgentFinish):
                        return await self._areturn(
                            next_step_output,
                            intermediate_steps,
                            run_manager=run_manager,
                        )

                    intermediate_steps.extend(next_step_output)
                    if len(next_step_output) == 1:
                        next_step_action = next_step_output[0]
                        # See if tool should return directly
                        tool_return = self._get_tool_return(next_step_action)
                        if tool_return is not None:
                            return await self._areturn(
                                tool_return, intermediate_steps, run_manager=run_manager
                            )

                    iterations += 1
                    time_elapsed = time.time() - start_time
                output = self.agent.return_stopped_response(
                    self.early_stopping_method, intermediate_steps, **inputs
                )
                return await self._areturn(
                    output, intermediate_steps, run_manager=run_manager
                )
            except TimeoutError:
                # stop early when interrupted by the async timeout
                output = self.agent.return_stopped_response(
                    self.early_stopping_method, intermediate_steps, **inputs
                )
                return await self._areturn(
                    output, intermediate_steps, run_manager=run_manager
                )

    def _get_tool_return(
        self, next_step_output: Tuple[AgentAction, str]
    ) -> Optional[AgentFinish]:
        """Check if the tool is a returning tool."""
        agent_action, observation = next_step_output
        name_to_tool_map = {tool.name: tool for tool in self.tools}
        return_value_key = "output"
        if len(self.agent.return_values) > 0:
            return_value_key = self.agent.return_values[0]
        # Invalid tools won't be in the map, so we return False.
        if agent_action.tool in name_to_tool_map:
            if name_to_tool_map[agent_action.tool].return_direct:
                return AgentFinish(
                    {return_value_key: observation},
                    "",
                )
        return None

    def _prepare_intermediate_steps(
        self, intermediate_steps: List[Tuple[AgentAction, str]]
    ) -> List[Tuple[AgentAction, str]]:
        if (
            isinstance(self.trim_intermediate_steps, int)
            and self.trim_intermediate_steps > 0
        ):
            return intermediate_steps[-self.trim_intermediate_steps :]
        elif callable(self.trim_intermediate_steps):
            return self.trim_intermediate_steps(intermediate_steps)
        else:
            return intermediate_steps