File size: 10,254 Bytes
00ed614
 
 
 
 
 
 
 
 
 
 
 
 
33f9c22
00ed614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96973d0
00ed614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import openai
import tiktoken

import numpy as np
import concurrent
import collections
import threading
import datetime
import time
import pytz
import json
import os

openai.api_key = os.environ["api_key"]

timezone = pytz.timezone('Asia/Shanghai')
timestamp2string = lambda timestamp: datetime.datetime.fromtimestamp(timestamp).astimezone(timezone).strftime('%Y-%m-%d %H:%M:%S')

def num_tokens_from_messages(messages, model="gpt-3.5-turbo"):
    """Returns the number of tokens used by a list of messages."""
    try:
        encoding = tiktoken.encoding_for_model(model)
    except KeyError:
        encoding = tiktoken.get_encoding("cl100k_base")
    if model == "gpt-3.5-turbo":  # note: future models may deviate from this
        num_tokens = 0
        len_values = 0
        for message in messages:
            num_tokens += 4  # every message follows <im_start>{role/name}\n{content}<im_end>\n
            for key, value in message.items():
                try:
                    num_tokens += len(encoding.encode(value))
                except:
                    num_tokens += int(num_tokens/len_values*len(value)) # linear estimation
                len_values += len(value)
                if key == "name":  # if there's a name, the role is omitted
                    num_tokens += -1  # role is always required and always 1 token
        num_tokens += 2  # every reply is primed with <im_start>assistant
        return num_tokens
    else:
        raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}.
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")


def read_tasks(cache_file=None):
    #from make_qas import input_dir
    from make_qas_comparison import input_dir
    file = f"{input_dir}/qas.json"
    with open(file, "r", encoding="utf-8") as f:
        qas = json.loads(f.read())
    if cache_file is not None:
        with open(cache_file, "r", encoding="utf-8") as f:
            cache_qas = json.loads(f.read())
        cache_q2a = {qa["q"]:qa["a"] for qa in cache_qas}
    else:
        cache_q2a = {}
    qs = [qa["q"] for qa in qas if qa["a"] is None and qa["q"] not in cache_q2a] # 还未请求处理的queries
    qas = [{"q":qa["q"], "a":qa["a"] if qa["a"] is not None else cache_q2a[qa["q"]]}
           for qa in qas if qa["a"] is not None or qa["q"] in cache_q2a] # 已经完成请求处理的queries
    print(f"read {len(qs)} queries without responses from {file} or {cache_file}")
    print(f"read {len(qas)} queries with responses from {file} or {cache_file}")
    return qs, qas

qs, qas = read_tasks()
start_time = time.time()
num_read_qas = len(qas)

def ask(query, timeout=600):
    answer = None
    dead_time = time.time() + timeout
    attempt_times = 0
    while answer is None and time.time()<dead_time and attempt_times<10:
        try:
            messages=[
                {"role": "user", "content": query}
            ]
            if num_tokens_from_messages(messages)>4096:
                return None
            answer = openai.ChatCompletion.create(
                model="gpt-3.5-turbo-0301",
                messages=messages,
                temperature=0.1,
            )["choices"][0]["message"]["content"]
        except Exception as e:
            if time.time()<dead_time:
                print(e)
                if "Please reduce the length of the messages." in str(e):
                    return None
                else:
                    attempt_times += 1
                    wait_time = int(attempt_times*10)
                    time.sleep(wait_time)
                    print(f"retry in {attempt_times*10} seconds...")
    return answer


def askingChatGPT(qs, qas, min_interval_seconds=3, max_interval_seconds=15, max_retry_times=3):
    
    history_elapsed_time = [max_interval_seconds]*10
    for i, q in enumerate(qs):
        ask_start_time = time.time()
        
        # 最直接的方法,调用ask函数,但可能因为超时等原因阻塞住
        #a = ask(q)
        
        # 下面是我之前设计的一系列,超时->重试,的方法
        def ask_(q, timeout):
            executor = concurrent.futures.ThreadPoolExecutor()
            future = executor.submit(ask, q, timeout)  # 提交函数调用任务
            try:
                a = future.result(timeout=timeout)  # 等待函数调用任务完成,超时时间为30秒
                return a
            except concurrent.futures.TimeoutError:
                print(f"ask call timed out after {timeout:.2f} seconds, retrying...")
            executor.shutdown(wait=False)
            return ask_(q, timeout*2)  # 当超时时,重新调用函数
        
        retry_times = 0
        a = None
        while a is None and retry_times<max_retry_times:
            a = ask_(q, timeout=max(max_interval_seconds,np.mean(sorted(history_elapsed_time)[:8])))
            retry_times += 1
        
        qas.append({"q":q, "a":a})
        
        ask_end_time = time.time()
        elapsed_time = ask_end_time - ask_start_time
        history_elapsed_time = history_elapsed_time[1:] + [elapsed_time]
        delayTime = min_interval_seconds - elapsed_time
        if delayTime>0:
            time.sleep(delayTime)
        
        print(f"{timestamp2string(time.time())}:  iterations:  {i+1} / {len(qs)} | elapsed time of this query (s):  {elapsed_time:.2f}")
    
    return


thread = threading.Thread(target=lambda :askingChatGPT(qs, qas))
thread.daemon = True
thread.start()


import gradio as gr


def showcase(access_key):
    if not access_key==os.getenv('access_key'):
        chatbot_ret = [(f"Your entered Access Key:<br>{access_key}<br>is incorrect.", f"So i cannot provide you any information in this private space.")]
    else:
        recent_qas = qas[-10:]
        chatbot_ret = [(f"Your entered Access Key is correct.", f"The latest {len(recent_qas)} query-responses are displayed below.")]
        for qa in recent_qas:
            chatbot_ret += [(qa["q"].replace("\n","<br>"), str(qa["a"]).replace("\n","<br>"))]
    return chatbot_ret


def download(access_key):
    if not access_key.startswith(os.getenv('access_key')):
        chatbot_ret = [(f"Your entered Access Key:<br>{access_key}<br>is incorrect.", f"So i cannot provide you any information in this private space.")]
        file_ret = gr.File.update(value=None, visible=False)
    else:
        chatbot_ret = [(f"Your entered Access Key is correct.", f"The file containing all processed query-responses ({len(qas)} in total) can be downloaded below.")]
        from make_qas import input_dir
        filename = f"{input_dir}/qas-{len(qas)}.json"
        with open(filename, "w", encoding="utf-8") as f:
            f.write(json.dumps(qas, ensure_ascii=False, indent=4))
        file_ret = gr.File.update(value=filename, visible=True)
    return chatbot_ret, file_ret


def display(access_key):
    if not access_key==os.getenv('access_key'):
        chatbot_ret = [(f"Your entered Access Key:<br>{access_key}<br>is incorrect.", f"So i cannot provide you any information in this private space.")]
    elif len(qas)-num_read_qas<1:
        chatbot_ret = [(f"Your entered Access Key is correct.", f"But the progress has just started for a while and has no useful progress information to provide.")]
    else:
        num_total_qs, num_processed_qs = len(qs), len(qas) - num_read_qas
        time_takes = time.time() - start_time
        time_remains = time_takes * (num_total_qs-num_processed_qs) / num_processed_qs
        end_time = start_time + time_takes + time_remains
        
        messages = []
        for qa in qas:
            messages.append({"role":"user", "content":qa["q"]})
            messages.append({"role":"assistant", "content":qa["a"] or ""})
        num_tokens_processed = num_tokens_from_messages(messages)
        num_tokens_total = int(num_tokens_processed * (num_total_qs+num_read_qas) / (num_processed_qs+num_read_qas))
        dollars_tokens_processed = 0.002 * int(num_tokens_processed/1000)
        dollars_tokens_total = 0.002 * int(num_tokens_total/1000)
        
        chatbot_ret = [(f"Your entered Access Key is correct.", f"The information of progress is displayed below.")]
        chatbot_ret += [(f"The number of processed / total queries:", f"{num_processed_qs} / {num_total_qs} (+{num_read_qas})")]
        chatbot_ret += [(f"The hours already takes / est. remains:", f"{time_takes/3600:.2f} / {time_remains/3600:.2f}")]
        chatbot_ret += [(f"The time starts / est. ends:", f"{timestamp2string(start_time)} / {timestamp2string(end_time)}")]
        chatbot_ret += [(f"The number of processed / est. total tokens:", f"{num_tokens_processed} / {num_tokens_total}")]
        chatbot_ret += [(f"The dollars of processed / est. total tokens:", f"{dollars_tokens_processed:.2f} / {dollars_tokens_total:.2f}")]
        
    return chatbot_ret


with gr.Blocks() as demo:

    gr.Markdown(
        """
        Hello friends,
        
        Thanks for your attention on this space. But this space is for my own use, i.e., building a dataset with answers from ChatGPT, and the access key for runtime feedback is only shared to my colleagues.
        
        If you want to ask ChatGPT on Huggingface just as the title says, you can try this [one](https://huggingface.co/spaces/zhangjf/chatbot) I built for public.
        """
    )
    
    with gr.Column(variant="panel"):
        chatbot = gr.Chatbot()
        txt = gr.Textbox(show_label=False, container=False,
                         placeholder="Enter your Access Key to access this private space")
        with gr.Row():
            button_showcase = gr.Button("Show Recent Query-Responses")
            button_download = gr.Button("Download All Query-Responses")
            button_display = gr.Button("Display Progress Infomation")
    
    downloadfile = gr.File(None, interactive=False, show_label=False, visible=False)
    
    button_showcase.click(fn=showcase, inputs=[txt], outputs=[chatbot])
    button_download.click(fn=download, inputs=[txt], outputs=[chatbot, downloadfile])
    button_display.click(fn=display, inputs=[txt], outputs=[chatbot])

demo.launch()