File size: 8,408 Bytes
36d9761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import gc
import tqdm
import math
import lpips
import pyiqa
import argparse
import clip
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from omegaconf import OmegaConf
from accelerate import Accelerator
from accelerate.utils import set_seed
from PIL import Image
from torchvision import transforms
# from tqdm.auto import tqdm
import diffusers
import utils.misc as misc
from diffusers.utils.import_utils import is_xformers_available
from diffusers.optimization import get_scheduler
from de_net import DEResNet
from s3diff_tile import S3Diff
from my_utils.testing_utils import parse_args_paired_testing, PlainDataset, lr_proc
from utils.util_image import ImageSpliterTh
from my_utils.utils import instantiate_from_config
from pathlib import Path
from utils import util_image
from utils.wavelet_color import wavelet_color_fix, adain_color_fix
def evaluate(in_path, ref_path, ntest):
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
metric_dict = {}
metric_dict["clipiqa"] = pyiqa.create_metric('clipiqa').to(device)
metric_dict["musiq"] = pyiqa.create_metric('musiq').to(device)
metric_dict["niqe"] = pyiqa.create_metric('niqe').to(device)
metric_dict["maniqa"] = pyiqa.create_metric('maniqa').to(device)
metric_paired_dict = {}
in_path = Path(in_path) if not isinstance(in_path, Path) else in_path
assert in_path.is_dir()
ref_path_list = None
if ref_path is not None:
ref_path = Path(ref_path) if not isinstance(ref_path, Path) else ref_path
ref_path_list = sorted([x for x in ref_path.glob("*.[jpJP][pnPN]*[gG]")])
if ntest is not None: ref_path_list = ref_path_list[:ntest]
metric_paired_dict["psnr"]=pyiqa.create_metric('psnr', test_y_channel=True, color_space='ycbcr').to(device)
metric_paired_dict["lpips"]=pyiqa.create_metric('lpips').to(device)
metric_paired_dict["dists"]=pyiqa.create_metric('dists').to(device)
metric_paired_dict["ssim"]=pyiqa.create_metric('ssim', test_y_channel=True, color_space='ycbcr' ).to(device)
lr_path_list = sorted([x for x in in_path.glob("*.[jpJP][pnPN]*[gG]")])
if ntest is not None: lr_path_list = lr_path_list[:ntest]
print(f'Find {len(lr_path_list)} images in {in_path}')
result = {}
for i in tqdm.tqdm(range(len(lr_path_list))):
_in_path = lr_path_list[i]
_ref_path = ref_path_list[i] if ref_path_list is not None else None
im_in = util_image.imread(_in_path, chn='rgb', dtype='float32') # h x w x c
im_in_tensor = util_image.img2tensor(im_in).cuda() # 1 x c x h x w
for key, metric in metric_dict.items():
with torch.cuda.amp.autocast():
result[key] = result.get(key, 0) + metric(im_in_tensor).item()
if ref_path is not None:
im_ref = util_image.imread(_ref_path, chn='rgb', dtype='float32') # h x w x c
im_ref_tensor = util_image.img2tensor(im_ref).cuda()
for key, metric in metric_paired_dict.items():
result[key] = result.get(key, 0) + metric(im_in_tensor, im_ref_tensor).item()
if ref_path is not None:
fid_metric = pyiqa.create_metric('fid')
result['fid'] = fid_metric(in_path, ref_path)
print_results = []
for key, res in result.items():
if key == 'fid':
print(f"{key}: {res:.2f}")
print_results.append(f"{key}: {res:.2f}")
else:
print(f"{key}: {res/len(lr_path_list):.5f}")
print_results.append(f"{key}: {res/len(lr_path_list):.5f}")
return print_results
def main(args):
config = OmegaConf.load(args.base_config)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
if accelerator.is_main_process:
os.makedirs(os.path.join(args.output_dir, "checkpoints"), exist_ok=True)
os.makedirs(os.path.join(args.output_dir, "eval"), exist_ok=True)
# initialize net_sr
net_sr = S3Diff(lora_rank_unet=args.lora_rank_unet, lora_rank_vae=args.lora_rank_vae, sd_path=args.sd_path, pretrained_path=args.pretrained_path, args=args)
net_sr.set_eval()
net_de = DEResNet(num_in_ch=3, num_degradation=2)
net_de.load_model(args.de_net_path)
net_de = net_de.cuda()
net_de.eval()
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
net_sr.unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available, please install it by running `pip install xformers`")
if args.gradient_checkpointing:
net_sr.unet.enable_gradient_checkpointing()
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
dataset_val = PlainDataset(config.validation)
dl_val = torch.utils.data.DataLoader(dataset_val, batch_size=1, shuffle=False, num_workers=0)
# Prepare everything with our `accelerator`.
net_sr, net_de = accelerator.prepare(net_sr, net_de)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move al networksr to device and cast to weight_dtype
net_sr.to(accelerator.device, dtype=weight_dtype)
net_de.to(accelerator.device, dtype=weight_dtype)
offset = args.padding_offset
for step, batch_val in enumerate(dl_val):
lr_path = batch_val['lr_path'][0]
(path, name) = os.path.split(lr_path)
im_lr = batch_val['lr'].cuda()
im_lr = im_lr.to(memory_format=torch.contiguous_format).float()
ori_h, ori_w = im_lr.shape[2:]
im_lr_resize = F.interpolate(
im_lr,
size=(ori_h * config.sf,
ori_w * config.sf),
mode='bicubic',
)
im_lr_resize = im_lr_resize.contiguous()
im_lr_resize_norm = im_lr_resize * 2 - 1.0
im_lr_resize_norm = torch.clamp(im_lr_resize_norm, -1.0, 1.0)
resize_h, resize_w = im_lr_resize_norm.shape[2:]
pad_h = (math.ceil(resize_h / 64)) * 64 - resize_h
pad_w = (math.ceil(resize_w / 64)) * 64 - resize_w
im_lr_resize_norm = F.pad(im_lr_resize_norm, pad=(0, pad_w, 0, pad_h), mode='reflect')
B = im_lr_resize.size(0)
with torch.no_grad():
# forward pass
deg_score = net_de(im_lr)
pos_tag_prompt = [args.pos_prompt for _ in range(B)]
neg_tag_prompt = [args.neg_prompt for _ in range(B)]
x_tgt_pred = accelerator.unwrap_model(net_sr)(im_lr_resize_norm, deg_score, pos_prompt=pos_tag_prompt, neg_prompt=neg_tag_prompt)
x_tgt_pred = x_tgt_pred[:, :, :resize_h, :resize_w]
out_img = (x_tgt_pred * 0.5 + 0.5).cpu().detach()
output_pil = transforms.ToPILImage()(out_img[0])
if args.align_method == 'nofix':
output_pil = output_pil
else:
im_lr_resize = transforms.ToPILImage()(im_lr_resize[0].cpu().detach())
if args.align_method == 'wavelet':
output_pil = wavelet_color_fix(output_pil, im_lr_resize)
elif args.align_method == 'adain':
output_pil = adain_color_fix(output_pil, im_lr_resize)
fname, ext = os.path.splitext(name)
outf = os.path.join(args.output_dir, fname+'.png')
output_pil.save(outf)
print_results = evaluate(args.output_dir, args.ref_path, None)
out_t = os.path.join(args.output_dir, 'results.txt')
with open(out_t, 'w', encoding='utf-8') as f:
for item in print_results:
f.write(f"{item}\n")
gc.collect()
torch.cuda.empty_cache()
if __name__ == "__main__":
args = parse_args_paired_testing()
main(args)
|