File size: 7,588 Bytes
36d9761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
from os import path as osp
from torch.utils import data as data
from torchvision.transforms.functional import normalize
from basicsr.data.data_util import paths_from_lmdb
from basicsr.utils import FileClient, imfrombytes, img2tensor, rgb2ycbcr, scandir
from basicsr.utils.registry import DATASET_REGISTRY
from pathlib import Path
import random
import cv2
import numpy as np
import torch
@DATASET_REGISTRY.register()
class SingleImageDataset(data.Dataset):
"""Read only lq images in the test phase.
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc).
There are two modes:
1. 'meta_info_file': Use meta information file to generate paths.
2. 'folder': Scan folders to generate paths.
Args:
opt (dict): Config for train datasets. It contains the following keys:
dataroot_lq (str): Data root path for lq.
meta_info_file (str): Path for meta information file.
io_backend (dict): IO backend type and other kwarg.
"""
def __init__(self, opt):
super(SingleImageDataset, self).__init__()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.mean = opt['mean'] if 'mean' in opt else None
self.std = opt['std'] if 'std' in opt else None
self.lq_folder = opt['dataroot_lq']
if self.io_backend_opt['type'] == 'lmdb':
self.io_backend_opt['db_paths'] = [self.lq_folder]
self.io_backend_opt['client_keys'] = ['lq']
self.paths = paths_from_lmdb(self.lq_folder)
elif 'meta_info_file' in self.opt:
with open(self.opt['meta_info_file'], 'r') as fin:
self.paths = [osp.join(self.lq_folder, line.rstrip().split(' ')[0]) for line in fin]
else:
self.paths = sorted(list(scandir(self.lq_folder, full_path=True)))
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# load lq image
lq_path = self.paths[index]
img_bytes = self.file_client.get(lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
# color space transform
if 'color' in self.opt and self.opt['color'] == 'y':
img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None]
# BGR to RGB, HWC to CHW, numpy to tensor
img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True)
# normalize
if self.mean is not None or self.std is not None:
normalize(img_lq, self.mean, self.std, inplace=True)
return {'lq': img_lq, 'lq_path': lq_path}
def __len__(self):
return len(self.paths)
@DATASET_REGISTRY.register()
class SingleImageNPDataset(data.Dataset):
"""Read only lq images in the test phase.
Read diffusion generated data for training CFW.
Args:
opt (dict): Config for train datasets. It contains the following keys:
gt_path: Data root path for training data. The path needs to contain the following folders:
gts: Ground-truth images.
inputs: Input LQ images.
latents: The corresponding HQ latent code generated by diffusion model given the input LQ image.
samples: The corresponding HQ image given the HQ latent code, just for verification.
io_backend (dict): IO backend type and other kwarg.
"""
def __init__(self, opt):
super(SingleImageNPDataset, self).__init__()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.mean = opt['mean'] if 'mean' in opt else None
self.std = opt['std'] if 'std' in opt else None
if 'image_type' not in opt:
opt['image_type'] = 'png'
if isinstance(opt['gt_path'], str):
self.gt_paths = sorted([str(x) for x in Path(opt['gt_path']+'/gts').glob('*.'+opt['image_type'])])
self.lq_paths = sorted([str(x) for x in Path(opt['gt_path']+'/inputs').glob('*.'+opt['image_type'])])
self.np_paths = sorted([str(x) for x in Path(opt['gt_path']+'/latents').glob('*.npy')])
self.sample_paths = sorted([str(x) for x in Path(opt['gt_path']+'/samples').glob('*.'+opt['image_type'])])
else:
self.gt_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/gts').glob('*.'+opt['image_type'])])
self.lq_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/inputs').glob('*.'+opt['image_type'])])
self.np_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/latents').glob('*.npy')])
self.sample_paths = sorted([str(x) for x in Path(opt['gt_path'][0]+'/samples').glob('*.'+opt['image_type'])])
if len(opt['gt_path']) > 1:
for i in range(len(opt['gt_path'])-1):
self.gt_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/gts').glob('*.'+opt['image_type'])]))
self.lq_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/inputs').glob('*.'+opt['image_type'])]))
self.np_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/latents').glob('*.npy')]))
self.sample_paths.extend(sorted([str(x) for x in Path(opt['gt_path'][i+1]+'/samples').glob('*.'+opt['image_type'])]))
assert len(self.gt_paths) == len(self.lq_paths)
assert len(self.gt_paths) == len(self.np_paths)
assert len(self.gt_paths) == len(self.sample_paths)
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# load lq image
lq_path = self.lq_paths[index]
gt_path = self.gt_paths[index]
sample_path = self.sample_paths[index]
np_path = self.np_paths[index]
img_bytes = self.file_client.get(lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
img_bytes_gt = self.file_client.get(gt_path, 'gt')
img_gt = imfrombytes(img_bytes_gt, float32=True)
img_bytes_sample = self.file_client.get(sample_path, 'sample')
img_sample = imfrombytes(img_bytes_sample, float32=True)
latent_np = np.load(np_path)
# color space transform
if 'color' in self.opt and self.opt['color'] == 'y':
img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None]
img_gt = rgb2ycbcr(img_gt, y_only=True)[..., None]
img_sample = rgb2ycbcr(img_sample, y_only=True)[..., None]
# BGR to RGB, HWC to CHW, numpy to tensor
img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True)
img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True)
img_sample = img2tensor(img_sample, bgr2rgb=True, float32=True)
latent_np = torch.from_numpy(latent_np).float()
latent_np = latent_np.to(img_gt.device)
# normalize
if self.mean is not None or self.std is not None:
normalize(img_lq, self.mean, self.std, inplace=True)
normalize(img_gt, self.mean, self.std, inplace=True)
normalize(img_sample, self.mean, self.std, inplace=True)
return {'lq': img_lq, 'lq_path': lq_path, 'gt': img_gt, 'gt_path': gt_path, 'latent': latent_np[0], 'latent_path': np_path, 'sample': img_sample, 'sample_path': sample_path}
def __len__(self):
return len(self.gt_paths)
|