Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	File size: 3,924 Bytes
			
			| dc155d4 59e1cbc dc155d4 59e1cbc dc155d4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | """
"""
import contextlib
from contextvars import ContextVar
from io import BytesIO
from typing import Any
from typing import cast
from unittest.mock import patch
import torch
from torch._inductor.package.package import package_aoti
from torch.export.pt2_archive._package import AOTICompiledModel
from torch.export.pt2_archive._package_weights import Weights
INDUCTOR_CONFIGS_OVERRIDES = {
    'aot_inductor.package_constants_in_so': False,
    'aot_inductor.package_constants_on_disk': True,
    'aot_inductor.package': True,
}
class ZeroGPUWeights:
    def __init__(self, constants_map: dict[str, torch.Tensor], to_cuda: bool = False):
        if to_cuda:
            self.constants_map = {name: tensor.to('cuda') for name, tensor in constants_map.items()}
        else:
            self.constants_map = constants_map
    def __reduce__(self):
        print('ZeroGPUWeights.__reduce__', f'{id(self)=}', sum([tensor.nbytes for tensor in self.constants_map.values()]))
        constants_map: dict[str, torch.Tensor] = {}
        for name, tensor in self.constants_map.items():
            tensor_ = torch.empty_like(tensor, device='cpu').pin_memory()
            constants_map[name] = tensor_.copy_(tensor).detach().share_memory_()
        return ZeroGPUWeights, (constants_map, True)
class ZeroGPUCompiledModel:
    def __init__(self, archive_file: torch.types.FileLike, weights: ZeroGPUWeights):
        self.archive_file = archive_file
        self.weights = weights
        self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None)
    def __call__(self, *args, **kwargs):
        if (compiled_model := self.compiled_model.get()) is None:
            compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
            compiled_model.load_constants(self.weights.constants_map, check_full_update=True, user_managed=True)
            self.compiled_model.set(compiled_model)
        return compiled_model(*args, **kwargs)
    def __reduce__(self):
        print('ZeroGPUCompiledModel.__reduce__', f'{id(self.weights)=}')
        return ZeroGPUCompiledModel, (self.archive_file, self.weights)
def aoti_compile(
    exported_program: torch.export.ExportedProgram,
    inductor_configs: dict[str, Any] | None = None,
):
    inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES
    gm = cast(torch.fx.GraphModule, exported_program.module())
    assert exported_program.example_inputs is not None
    args, kwargs = exported_program.example_inputs
    artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs)
    archive_file = BytesIO()
    files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
    package_aoti(archive_file, files)
    weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights))
    zerogpu_weights = ZeroGPUWeights({name: weights.get_weight(name)[0] for name in weights})
    return ZeroGPUCompiledModel(archive_file, zerogpu_weights)
@contextlib.contextmanager
def capture_component_call(
    pipeline: Any,
    component_name: str,
    component_method='forward',
):
    class CapturedCallException(Exception):
        def __init__(self, *args, **kwargs):
            super().__init__()
            self.args = args
            self.kwargs = kwargs
    class CapturedCall:
        def __init__(self):
            self.args: tuple[Any, ...] = ()
            self.kwargs: dict[str, Any] = {}
    component = getattr(pipeline, component_name)
    captured_call = CapturedCall()
    def capture_call(*args, **kwargs):
        raise CapturedCallException(*args, **kwargs)
    with patch.object(component, component_method, new=capture_call):
        try:
            yield captured_call
        except CapturedCallException as e:
            captured_call.args = e.args
            captured_call.kwargs = e.kwargs
 | 
