Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,295 Bytes
51a1e24 c7eeeda 51a1e24 c7eeeda 883274d 39be275 883274d c7eeeda 51a1e24 c7eeeda 883274d 39be275 883274d 51a1e24 5755f6a c7eeeda 51a1e24 5755f6a 51a1e24 c7eeeda 51a1e24 c7eeeda 51a1e24 c7eeeda 51a1e24 5755f6a fafc779 5755f6a fafc779 5755f6a 51a1e24 c7eeeda 51a1e24 c7eeeda c92c8a6 c7eeeda 51a1e24 8eb34f8 c7eeeda 5755f6a c7eeeda 8eb34f8 c7eeeda 8eb34f8 c7eeeda 51a1e24 c7eeeda 51a1e24 c7eeeda 9332ef4 51a1e24 c7eeeda c92c8a6 c7eeeda db0ad2b 4781381 db0ad2b c7eeeda 51a1e24 5755f6a 51a1e24 8eb34f8 c7eeeda 285726a c7eeeda 51a1e24 c7eeeda 51a1e24 c7eeeda 51a1e24 c7eeeda 8eb34f8 51a1e24 c7eeeda 51a1e24 5755f6a 51a1e24 c7eeeda 51a1e24 c7eeeda 8eb34f8 51a1e24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
import os
import json
from PIL import Image
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
from huggingface_hub import InferenceClient
import math
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
# --- Prompt Enhancement using Hugging Face InferenceClient ---
def polish_prompt_hf(original_prompt, system_prompt):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
"""
# Ensure HF_TOKEN is set
api_key = os.environ.get("HF_TOKEN")
if not api_key:
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
return original_prompt
try:
# Initialize the client
client = InferenceClient(
provider="cerebras",
api_key=api_key,
)
# Format the messages for the chat completions API
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": original_prompt}
]
# Call the API
completion = client.chat.completions.create(
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
messages=messages,
)
# Parse the response
result = completion.choices[0].message.content
# Try to extract JSON if present
if '{"Rewritten"' in result:
try:
# Clean up the response
result = result.replace('```json', '').replace('```', '')
result_json = json.loads(result)
polished_prompt = result_json.get('Rewritten', result)
except:
polished_prompt = result
else:
polished_prompt = result
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during API call to Hugging Face: {e}")
# Fallback to original prompt if enhancement fails
return original_prompt
def polish_prompt(prompt, img):
"""
Main function to polish prompts for image editing using HF inference.
"""
SYSTEM_PROMPT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
Please strictly follow the rewriting rules below:
## 1. General Principles
- Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language.
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
- Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
- All added objects or modifications must align with the logic and style of the edited input image's overall scene.
## 2. Task Type Handling Rules
### 1. Add, Delete, Replace Tasks
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
> Original: "Add an animal"
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
### 2. Text Editing Tasks
- All text content must be enclosed in English double quotes " ". Do not translate or alter the original language of the text, and do not change the capitalization.
- **For text replacement tasks, always use the fixed template:**
- Replace "xx" to "yy".
- Replace the xx bounding box to "yy".
- If the user does not specify text content, infer and add concise text based on the instruction and the input image's context. For example:
> Original: "Add a line of text" (poster)
> Rewritten: "Add text "LIMITED EDITION" at the top center with slight shadow"
- Specify text position, color, and layout in a concise way.
### 3. Human Editing Tasks
- Maintain the person's core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.).
- If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style.
- **For expression changes, they must be natural and subtle, never exaggerated.**
- If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved.
- For background change tasks, emphasize maintaining subject consistency at first.
- Example:
> Original: "Change the person's hat"
> Rewritten: "Replace the man's hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged"
### 4. Style Transformation or Enhancement Tasks
- If a style is specified, describe it concisely with key visual traits. For example:
> Original: "Disco style"
> Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones"
- If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely.
- **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"
- If there are other changes, place the style description at the end.
## 3. Rationality and Logic Checks
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected.
- Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges).
# Output Format
Return only the rewritten instruction text directly, without JSON formatting or any other wrapper.
'''
# Note: We're not actually using the image in the HF version,
# but keeping the interface consistent
full_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
return polish_prompt_hf(full_prompt, SYSTEM_PROMPT)
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Scheduler configuration for Lightning
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler,torch_dtype=dtype).to(device)
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
# --- Ahead-of-time compilation ---
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
def concatenate_images(images, direction="horizontal"):
"""
Concatenate multiple PIL images either horizontally or vertically.
Args:
images: List of PIL Images
direction: "horizontal" or "vertical"
Returns:
PIL Image: Concatenated image
"""
if not images:
return None
# Filter out None images
valid_images = [img for img in images if img is not None]
if not valid_images:
return None
if len(valid_images) == 1:
return valid_images[0].convert("RGB")
# Convert all images to RGB
valid_images = [img.convert("RGB") for img in valid_images]
if direction == "horizontal":
# Calculate total width and max height
total_width = sum(img.width for img in valid_images)
max_height = max(img.height for img in valid_images)
# Create new image
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255))
# Paste images
x_offset = 0
for img in valid_images:
# Center image vertically if heights differ
y_offset = (max_height - img.height) // 2
concatenated.paste(img, (x_offset, y_offset))
x_offset += img.width
else: # vertical
# Calculate max width and total height
max_width = max(img.width for img in valid_images)
total_height = sum(img.height for img in valid_images)
# Create new image
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255))
# Paste images
y_offset = 0
for img in valid_images:
# Center image horizontally if widths differ
x_offset = (max_width - img.width) // 2
concatenated.paste(img, (x_offset, y_offset))
y_offset += img.height
return concatenated
# --- Main Inference Function ---
@spaces.GPU(duration=60)
def infer(
input_images,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=8, # Default to 8 steps for fast inference
rewrite_prompt=True,
progress=gr.Progress(track_tqdm=True),
):
"""
Generates an edited image using the Qwen-Image-Edit pipeline with Lightning acceleration.
"""
# Hardcode the negative prompt as in the original
negative_prompt = " "
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Set up the generator for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
# Handle input_images - it could be a single image or a list of images
if input_images is None:
raise gr.Error("Please upload at least one image.")
# If it's a single image (not a list), convert to list
if not isinstance(input_images, list):
input_images = [input_images]
images = [img[0] for img in input_images]
# Concatenate images horizontally
concatenated_image = concatenate_images(images, "horizontal")
if concatenated_image is None:
raise gr.Error("Failed to process the input images.")
print(f"Original prompt: '{prompt}'")
print(f"Negative Prompt: '{negative_prompt}'")
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}")
if rewrite_prompt:
prompt = polish_prompt(prompt, concatenated_image)
print(f"Rewritten Prompt: {prompt}")
# Generate the edited image - always generate just 1 image
try:
images = pipe(
concatenated_image,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1 # Always generate only 1 image
).images
# Return the first (and only) image
return images[0], seed
except Exception as e:
print(f"Error during inference: {e}")
raise e
# --- Examples and UI Layout ---
examples = [
# You can add example pairs of [image_path, prompt] here
# ["path/to/image1.jpg", "Replace the background with a beach scene"],
# ["path/to/image2.jpg", "Add a red hat to the person"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#logo-title {
text-align: center;
}
#logo-title img {
width: 400px;
}
#edit_text{margin-top: -62px !important}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<div id="logo-title">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;">
<h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 133px;">Multi Image Composition</h2>
</div>
""")
gr.Markdown("""
Compose a new image with elements from multiple image inputs with Qwen Image Edit. [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
This demo uses the [Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA, AoT compilation and FA3 for accelerated 8-step inference.
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.
""")
with gr.Row():
with gr.Column():
input_images = gr.Gallery(
label="Upload image(s) for editing",
show_label=True,
elem_id="gallery_input",
columns=3,
rows=2,
object_fit="contain",
height="auto",
file_types=['image'],
type='pil'
)
# Changed from Gallery to Image
result = gr.Image(
label="Result",
show_label=True,
type="pil"
)
with gr.Row():
prompt = gr.Text(
label="Edit Instruction",
show_label=False,
placeholder="Describe the edit instruction of the composed scene (e.g., 'place the product in the woman's hand')",
container=False,
)
run_button = gr.Button("Edit!", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=4,
maximum=28,
step=1,
value=8
)
# Removed num_images_per_prompt slider entirely
rewrite_prompt = gr.Checkbox(
label="Enhance prompt (using HF Inference)",
value=True
)
# gr.Examples(examples=examples, inputs=[input_image, prompt], outputs=[result, seed], fn=infer, cache_examples=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_images,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
rewrite_prompt,
# Removed num_images_per_prompt from inputs
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |