File size: 6,037 Bytes
727a943
 
 
 
 
 
 
 
 
 
9eee006
 
 
 
 
 
 
727a943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eee006
 
 
 
 
 
 
727a943
 
9eee006
727a943
9eee006
 
 
 
 
 
727a943
 
 
9eee006
 
 
 
727a943
 
 
9eee006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727a943
 
 
9eee006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727a943
 
 
9eee006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727a943
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""
Adapted from
https://github.com/huggingface/flux-fast/blob/156281514e2725782ffab9431d4004840f7e3b4d/utils/pipeline_utils.py#L87
"""

import torch
from typing import List, Optional
import inspect


import torch
from kernels import get_kernel


_flash_attn_func = get_kernel("kernels-community/vllm-flash-attn3").flash_attn_func

@torch.library.custom_op("flash::flash_attn_func", mutates_args=())
def flash_attn_func(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    softmax_scale: Optional[float] = None,
    causal: bool = False,
    # probably wrong type for these 4
    qv: Optional[float] = None,
    q_descale: Optional[float] = None,
    k_descale: Optional[float] = None,
    v_descale: Optional[float] = None,
    window_size: Optional[List[int]] = None,
    sink_token_length: int = 0,
    softcap: float = 0.0,
    num_splits: int = 1,
    # probably wrong type for this too
    pack_gqa: Optional[float] = None,
    deterministic: bool = False,
    sm_margin: int = 0,
) -> torch.Tensor:  # Tuple[torch.Tensor, torch.Tensor]:
    if window_size is None:
        window_size = (-1, -1)
    else:
        window_size = tuple(window_size)

    sig = inspect.signature(_flash_attn_func)
    accepted = set(sig.parameters)
    all_kwargs = {
        "softmax_scale": softmax_scale,
        "causal": causal,
        "qv": qv,
        "q_descale": q_descale,
        "k_descale": k_descale,
        "v_descale": v_descale,
        "window_size": window_size,
        "sink_token_length": sink_token_length,
        "softcap": softcap,
        "num_splits": num_splits,
        "pack_gqa": pack_gqa,
        "deterministic": deterministic,
        "sm_margin": sm_margin,
    }
    kwargs = {k: v for k, v in all_kwargs.items() if k in accepted}

    outputs = _flash_attn_func(q, k, v, **kwargs)
    return outputs[0]


@flash_attn_func.register_fake
def _(q, k, v, **kwargs):
    # two outputs:
    # 1. output: (batch, seq_len, num_heads, head_dim)
    # 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32
    meta_q = torch.empty_like(q).contiguous()
    return meta_q  # , q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32)


class FlashFluxAttnProcessor3_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __call__(
        self,
        attn,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            from diffusers.models.embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        # NB: transposes are necessary to match expected SDPA input shape
        hidden_states = flash_attn_func(query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2))[
            0
        ].transpose(1, 2)

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states