Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,878 Bytes
3df4fd5 b63cd34 3df4fd5 fc3f0ed 1d06ec0 3df4fd5 d00873b dfac6b3 3df4fd5 b63cd34 288103a 3df4fd5 3af4a0e b63cd34 288103a b63cd34 288103a 3df4fd5 318b03c b63cd34 318b03c fc3f0ed 3af4a0e 318b03c 3df4fd5 318b03c 1d06ec0 318b03c 0dc2e9f 3df4fd5 35fad5f b63cd34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
"""
"""
from typing import Any
from typing import Callable
from typing import ParamSpec
import spaces
import torch
from torch.utils._pytree import tree_map_only
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
from optimization_utils import capture_component_call
from optimization_utils import aoti_compile
from optimization_utils import cudagraph
P = ParamSpec('P')
TRANSFORMER_HIDDEN_DIM = torch.export.Dim('hidden', min=4096, max=8212)
TRANSFORMER_DYNAMIC_SHAPES = {
'hidden_states': {1: TRANSFORMER_HIDDEN_DIM},
'img_ids': {0: TRANSFORMER_HIDDEN_DIM},
}
INDUCTOR_CONFIGS = {
'conv_1x1_as_mm': True,
'epilogue_fusion': False,
'coordinate_descent_tuning': True,
'coordinate_descent_check_all_directions': True,
'max_autotune': True,
'triton.cudagraphs': True,
}
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
@spaces.GPU(duration=1500)
def compile_transformer():
with capture_component_call(pipeline, 'transformer') as call:
pipeline(*args, **kwargs)
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
pipeline.transformer.fuse_qkv_projections()
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
exported = torch.export.export(
mod=pipeline.transformer,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes,
)
return aoti_compile(exported, INDUCTOR_CONFIGS)
transformer_config = pipeline.transformer.config
pipeline.transformer = compile_transformer()
pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]
|