File size: 789 Bytes
d4bddcf
 
8eed7c4
a7418a6
d4bddcf
 
a7418a6
d4bddcf
 
8eed7c4
d4bddcf
8eed7c4
d4bddcf
 
8eed7c4
d4bddcf
 
3d2c6fa
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from transformers import AutoFeatureExtractor, ResNetForImageClassification
import torch
from datasets import load_dataset

dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]

feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")

inputs = feature_extractor(image, return_tensors="pt")

with torch.no_grad():
    logits = model(**inputs).logits

# model predicts one of the 1000 ImageNet classes
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])

import gradio as gr
def segment(image):
    pass  # Implement your image segmentation model here...

gr.Interface(fn=segment, inputs="image", outputs="image").launch()