File size: 7,313 Bytes
fb83c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
import subprocess
import os
import sys
from .common_gui import get_folder_path, add_pre_postfix, scriptdir, list_dirs, setup_environment
from .custom_logging import setup_logging

# Set up logging
log = setup_logging()

PYTHON = sys.executable


def caption_images(

    train_data_dir: str,

    caption_file_ext: str,

    batch_size: int,

    num_beams: int,

    top_p: float,

    max_length: int,

    min_length: int,

    beam_search: bool,

    prefix: str = "",

    postfix: str = "",

) -> None:
    """

    Automatically generates captions for images in the specified directory using the BLIP model.



    This function prepares and executes a command-line script to process images in batches, applying advanced

    NLP techniques for caption generation. It supports customization of the captioning process through various

    parameters like batch size, beam search, and more. Optionally, prefixes and postfixes can be added to captions.





    Args:

        train_data_dir (str): The directory containing the images to be captioned.

        caption_file_ext (str): The extension for the caption files.

        batch_size (int): The batch size for the captioning process.

        num_beams (int): The number of beams to use in the captioning process.

        top_p (float): The top p value to use in the captioning process.

        max_length (int): The maximum length of the captions.

        min_length (int): The minimum length of the captions.

        beam_search (bool): Whether to use beam search in the captioning process.

        prefix (str): The prefix to add to the captions.

        postfix (str): The postfix to add to the captions.

    """
    # Check if the image folder is provided
    if not train_data_dir:
        log.info("Image folder is missing...")
        return

    # Check if the caption file extension is provided
    if not caption_file_ext:
        log.info("Please provide an extension for the caption files.")
        return

    log.info(f"Captioning files in {train_data_dir}...")

    # Construct the command to run make_captions.py
    run_cmd = [rf"{PYTHON}", rf"{scriptdir}/sd-scripts/finetune/make_captions.py"]

    # Add required arguments
    run_cmd.append("--batch_size")
    run_cmd.append(str(batch_size))
    run_cmd.append("--num_beams")
    run_cmd.append(str(num_beams))
    run_cmd.append("--top_p")
    run_cmd.append(str(top_p))
    run_cmd.append("--max_length")
    run_cmd.append(str(max_length))
    run_cmd.append("--min_length")
    run_cmd.append(str(min_length))

    # Add optional flags to the command
    if beam_search:
        run_cmd.append("--beam_search")
    if caption_file_ext:
        run_cmd.append("--caption_extension")
        run_cmd.append(caption_file_ext)

    # Add the directory containing the training data
    run_cmd.append(rf"{train_data_dir}")

    # Add URL for caption model weights
    run_cmd.append("--caption_weights")
    run_cmd.append(
        rf"https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth"
    )

    # Set up the environment
    env = setup_environment()

    # Reconstruct the safe command string for display
    command_to_run = " ".join(run_cmd)
    log.info(f"Executing command: {command_to_run}")

    # Run the command in the sd-scripts folder context
    subprocess.run(run_cmd, env=env, shell=False, cwd=rf"{scriptdir}/sd-scripts")

    # Add prefix and postfix
    add_pre_postfix(
        folder=train_data_dir,
        caption_file_ext=caption_file_ext,
        prefix=prefix,
        postfix=postfix,
    )

    log.info("...captioning done")


###
# Gradio UI
###


def gradio_blip_caption_gui_tab(headless=False, default_train_dir=None):
    from .common_gui import create_refresh_button

    default_train_dir = (
        default_train_dir
        if default_train_dir is not None
        else os.path.join(scriptdir, "data")
    )
    current_train_dir = default_train_dir

    def list_train_dirs(path):
        nonlocal current_train_dir
        current_train_dir = path
        return list(list_dirs(path))

    with gr.Tab("BLIP Captioning"):
        gr.Markdown(
            "This utility uses BLIP to caption files for each image in a folder."
        )
        with gr.Group(), gr.Row():
            train_data_dir = gr.Dropdown(
                label="Image folder to caption (containing the images to caption)",
                choices=[""] + list_train_dirs(default_train_dir),
                value="",
                interactive=True,
                allow_custom_value=True,
            )
            create_refresh_button(
                train_data_dir,
                lambda: None,
                lambda: {"choices": list_train_dirs(current_train_dir)},
                "open_folder_small",
            )
            button_train_data_dir_input = gr.Button(
                "📂",
                elem_id="open_folder_small",
                elem_classes=["tool"],
                visible=(not headless),
            )
            button_train_data_dir_input.click(
                get_folder_path,
                outputs=train_data_dir,
                show_progress=False,
            )
        with gr.Row():
            caption_file_ext = gr.Dropdown(
                label="Caption file extension",
                choices=[".cap", ".caption", ".txt"],
                value=".txt",
                interactive=True,
                allow_custom_value=True,
            )

            prefix = gr.Textbox(
                label="Prefix to add to BLIP caption",
                placeholder="(Optional)",
                interactive=True,
            )

            postfix = gr.Textbox(
                label="Postfix to add to BLIP caption",
                placeholder="(Optional)",
                interactive=True,
            )

            batch_size = gr.Number(value=1, label="Batch size", interactive=True)

        with gr.Row():
            beam_search = gr.Checkbox(
                label="Use beam search", interactive=True, value=True
            )
            num_beams = gr.Number(value=1, label="Number of beams", interactive=True)
            top_p = gr.Number(value=0.9, label="Top p", interactive=True)
            max_length = gr.Number(value=75, label="Max length", interactive=True)
            min_length = gr.Number(value=5, label="Min length", interactive=True)

        caption_button = gr.Button("Caption images")

        caption_button.click(
            caption_images,
            inputs=[
                train_data_dir,
                caption_file_ext,
                batch_size,
                num_beams,
                top_p,
                max_length,
                min_length,
                beam_search,
                prefix,
                postfix,
            ],
            show_progress=False,
        )

        train_data_dir.change(
            fn=lambda path: gr.Dropdown(choices=[""] + list_train_dirs(path)),
            inputs=train_data_dir,
            outputs=train_data_dir,
            show_progress=False,
        )