Spaces:
Sleeping
Sleeping
File size: 6,184 Bytes
6a52406 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels, mid_channels=None, residual=False):
super().__init__()
self.residual = residual
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.GroupNorm(1, mid_channels),
nn.GELU(),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.GroupNorm(1, out_channels),
)
def forward(self, x):
if self.residual:
return F.gelu(x + self.double_conv(x))
else:
return self.double_conv(x)
class Down(nn.Module):
def __init__(self, in_channels, out_channels, emb_dim=256):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, in_channels, residual=True),
DoubleConv(in_channels, out_channels),
)
self.emb_layer = nn.Sequential(
nn.SiLU(),
nn.Linear(
emb_dim,
out_channels
),
)
def forward(self, x, t):
x = self.maxpool_conv(x)
emb = self.emb_layer(t)[:, :, None, None].repeat(1, 1, x.shape[-2], x.shape[-1])
return x + emb
class Up(nn.Module):
def __init__(self, in_channels, out_channels, emb_dim=256):
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
self.conv = nn.Sequential(
DoubleConv(in_channels, in_channels, residual=True),
DoubleConv(in_channels, out_channels, in_channels // 2),
)
self.emb_layer = nn.Sequential(
nn.SiLU(),
nn.Linear(
emb_dim,
out_channels
),
)
def forward(self, x, skip_x, t):
x = self.up(x)
x = torch.cat([skip_x, x], dim=1)
x = self.conv(x)
emb = self.emb_layer(t)[:, :, None, None].repeat(1, 1, x.shape[-2], x.shape[-1])
return x + emb
class UNet(nn.Module):
def __init__(self, c_in=3, c_out=3, time_dim=256, device="cuda"):
super().__init__()
self.device = device
self.time_dim = time_dim
self.inc = DoubleConv(c_in, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 256)
self.bot1 = DoubleConv(256, 512)
self.bot2 = DoubleConv(512, 512)
self.bot3 = DoubleConv(512, 256)
self.up1 = Up(512, 128)
self.up2 = Up(256, 64)
self.up3 = Up(128, 64)
self.outc = nn.Conv2d(64, c_out, kernel_size=1)
def positional_encoding(self, t, channels):
inv_freq = 1.0 / (
10000
** (torch.arange(0, channels, 2, device=self.device).float() / channels)
)
pos_enc_a = torch.sin(t.repeat(1, channels // 2) * inv_freq)
pos_enc_b = torch.cos(t.repeat(1, channels // 2) * inv_freq)
pos_enc = torch.cat([pos_enc_a, pos_enc_b], dim=-1)
return pos_enc
def forward(self, image, t):
t = t.unsqueeze(-1).type(torch.float)
t = self.positional_encoding(t, self.time_dim)
x1 = self.inc(image)
x2 = self.down1(x1, t)
x3 = self.down2(x2, t)
x4 = self.down3(x3, t)
x4 = self.bot1(x4)
# x4 = self.bot2(x4)
x4 = self.bot3(x4)
x = self.up1(x4, x3, t)
x = self.up2(x, x2, t)
x = self.up3(x, x1, t)
output = self.outc(x)
return output
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = UNet(device = device).to(device)
model.load_state_dict(torch.load('Model_Saved_States/diffusion_64.pth'))
img_size = 64
class Diffusion():
def __init__(self, time_steps = 500, beta_start = 0.0001, beta_stop = 0.02, image_size = 64, device = device):
self.time_steps = time_steps
self.beta_start = beta_start
self.beta_stop = beta_stop
self.img_size = image_size
self.device = device
self.beta = self.beta_schedule()
self.beta = self.beta.to(device)
self.alpha = 1 - self.beta
self.alpha = self.alpha.to(device)
self.alpha_hat = torch.cumprod(self.alpha, dim = 0).to(device)
def beta_schedule(self):
return torch.linspace(self.beta_start, self.beta_stop, self.time_steps)
def noise_images(self, images, t):
sqrt_alpha_hat = torch.sqrt(self.alpha_hat[t])[:, None, None, None,]
sqrt_one_minus_alpha_hat = torch.sqrt(1 - self.alpha_hat[t])[:, None, None, None,]
noises = torch.randn_like(images)
noised_images = sqrt_alpha_hat * images + sqrt_one_minus_alpha_hat * noises
return noised_images, noises
def random_timesteps(self, n):
return torch.randint(low=1, high=self.time_steps, size=(n,))
def generate_samples(self, model, n):
with torch.no_grad():
x = torch.randn((n, 3, self.img_size, self.img_size)).to(self.device)
for i in range(self.time_steps - 1, 1, -1):
t = (torch.ones(n) * i).long().to(self.device)
predicted_noise = model(x, t)
alpha = self.alpha[t][:, None, None, None]
alpha_hat = self.alpha_hat[t][:, None, None, None]
beta = self.beta[t][:, None, None, None]
if i > 1:
noise = torch.randn_like(x)
else:
noise = torch.zeros_like(x)
x = 1 / torch.sqrt(alpha) * (x - ((1 - alpha) / (torch.sqrt(1 - alpha_hat))) * predicted_noise) + torch.sqrt(beta) * noise
return (x[0].cpu().numpy().transpose(1, 2, 0) / 255)
#show_images
diffusion = Diffusion()
import numpy as np
def greet(n):
image = diffusion.generate_samples(model, n = 1)
image = (np.clip(image * 255, -1, 1) + 1) / 2
plt.imshow(image)
return image
iface = gr.Interface(fn=greet, inputs="number", outputs="image")
iface.launch(share = True) |