File size: 7,622 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
from maskrcnn_benchmark.config import cfg

# transpose
FLIP_LEFT_RIGHT = 0
FLIP_TOP_BOTTOM = 1


class Keypoints(object):
    def __init__(self, keypoints, size, mode=None):
        # FIXME remove check once we have better integration with device
        # in my version this would consistently return a CPU tensor
        device = keypoints.device if isinstance(keypoints, torch.Tensor) else torch.device("cpu")
        keypoints = torch.as_tensor(keypoints, dtype=torch.float32, device=device)
        num_keypoints = keypoints.shape[0]
        if num_keypoints:
            keypoints = keypoints.view(num_keypoints, -1, 3)

        # TODO should I split them?
        # self.visibility = keypoints[..., 2]
        self.keypoints = keypoints  # [..., :2]

        self.size = size
        self.mode = mode
        self.extra_fields = {}

    def crop(self, box):
        raise NotImplementedError()

    def resize(self, size, *args, **kwargs):
        ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size))
        ratio_w, ratio_h = ratios
        resized_data = self.keypoints.clone()
        resized_data[..., 0] *= ratio_w
        resized_data[..., 1] *= ratio_h
        keypoints = type(self)(resized_data, size, self.mode)
        for k, v in self.extra_fields.items():
            keypoints.add_field(k, v)
        return keypoints

    def transpose(self, method):
        if method not in (FLIP_LEFT_RIGHT,):
            raise NotImplementedError("Only FLIP_LEFT_RIGHT implemented")

        flip_inds = self.FLIP_INDS
        flipped_data = self.keypoints[:, flip_inds]
        width = self.size[0]
        TO_REMOVE = 1
        # Flip x coordinates
        flipped_data[..., 0] = width - flipped_data[..., 0] - TO_REMOVE

        # Maintain COCO convention that if visibility == 0, then x, y = 0
        inds = flipped_data[..., 2] == 0
        flipped_data[inds] = 0

        keypoints = type(self)(flipped_data, self.size, self.mode)
        for k, v in self.extra_fields.items():
            keypoints.add_field(k, v)
        return keypoints

    def to(self, *args, **kwargs):
        keypoints = type(self)(self.keypoints.to(*args, **kwargs), self.size, self.mode)
        for k, v in self.extra_fields.items():
            if hasattr(v, "to"):
                v = v.to(*args, **kwargs)
            keypoints.add_field(k, v)
        return keypoints

    def __getitem__(self, item):
        keypoints = type(self)(self.keypoints[item], self.size, self.mode)
        for k, v in self.extra_fields.items():
            keypoints.add_field(k, v[item])
        return keypoints

    def add_field(self, field, field_data):
        self.extra_fields[field] = field_data

    def get_field(self, field):
        return self.extra_fields[field]

    def __repr__(self):
        s = self.__class__.__name__ + "("
        s += "num_instances={}, ".format(len(self.keypoints))
        s += "image_width={}, ".format(self.size[0])
        s += "image_height={})".format(self.size[1])
        return s


class PersonKeypoints(Keypoints):
    _NAMES = [
        "nose",
        "left_eye",
        "right_eye",
        "left_ear",
        "right_ear",
        "left_shoulder",
        "right_shoulder",
        "left_elbow",
        "right_elbow",
        "left_wrist",
        "right_wrist",
        "left_hip",
        "right_hip",
        "left_knee",
        "right_knee",
        "left_ankle",
        "right_ankle",
    ]
    _FLIP_MAP = {
        "left_eye": "right_eye",
        "left_ear": "right_ear",
        "left_shoulder": "right_shoulder",
        "left_elbow": "right_elbow",
        "left_wrist": "right_wrist",
        "left_hip": "right_hip",
        "left_knee": "right_knee",
        "left_ankle": "right_ankle",
    }

    def __init__(self, *args, **kwargs):
        super(PersonKeypoints, self).__init__(*args, **kwargs)
        if len(cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME) > 0:
            self.NAMES = cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME
            self.FLIP_MAP = {
                l: r for l, r in PersonKeypoints._FLIP_MAP.items() if l in cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME
            }
        else:
            self.NAMES = PersonKeypoints._NAMES
            self.FLIP_MAP = PersonKeypoints._FLIP_MAP

        self.FLIP_INDS = self._create_flip_indices(self.NAMES, self.FLIP_MAP)
        self.CONNECTIONS = self._kp_connections(self.NAMES)

    def to_coco_format(self):
        coco_result = []
        for i in range(self.keypoints.shape[0]):
            coco_kps = [0] * len(PersonKeypoints._NAMES) * 3
            for ki, name in enumerate(self.NAMES):
                coco_kps[3 * PersonKeypoints._NAMES.index(name)] = self.keypoints[i, ki, 0].item()
                coco_kps[3 * PersonKeypoints._NAMES.index(name) + 1] = self.keypoints[i, ki, 1].item()
                coco_kps[3 * PersonKeypoints._NAMES.index(name) + 2] = self.keypoints[i, ki, 2].item()
            coco_result.append(coco_kps)
        return coco_result

    def _create_flip_indices(self, names, flip_map):
        full_flip_map = flip_map.copy()
        full_flip_map.update({v: k for k, v in flip_map.items()})
        flipped_names = [i if i not in full_flip_map else full_flip_map[i] for i in names]
        flip_indices = [names.index(i) for i in flipped_names]
        return torch.tensor(flip_indices)

    def _kp_connections(self, keypoints):
        CONNECTIONS = [
            ["left_eye", "right_eye"],
            ["left_eye", "nose"],
            ["right_eye", "nose"],
            ["right_eye", "right_ear"],
            ["left_eye", "left_ear"],
            ["right_shoulder", "right_elbow"],
            ["right_elbow", "right_wrist"],
            ["left_shoulder", "left_elbow"],
            ["left_elbow", "left_wrist"],
            ["right_hip", "right_knee"],
            ["right_knee", "right_ankle"],
            ["left_hip", "left_knee"],
            ["left_knee", "left_ankle"],
            ["right_shoulder", "left_shoulder"],
            ["right_hip", "left_hip"],
        ]

        kp_lines = [
            [keypoints.index(conn[0]), keypoints.index(conn[1])]
            for conn in CONNECTIONS
            if conn[0] in self.NAMES and conn[1] in self.NAMES
        ]
        return kp_lines


# TODO make this nicer, this is a direct translation from C2 (but removing the inner loop)
def keypoints_to_heat_map(keypoints, rois, heatmap_size):
    if rois.numel() == 0:
        return rois.new().long(), rois.new().long()
    offset_x = rois[:, 0]
    offset_y = rois[:, 1]
    scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
    scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])

    offset_x = offset_x[:, None]
    offset_y = offset_y[:, None]
    scale_x = scale_x[:, None]
    scale_y = scale_y[:, None]

    x = keypoints[..., 0]
    y = keypoints[..., 1]

    x_boundary_inds = x == rois[:, 2][:, None]
    y_boundary_inds = y == rois[:, 3][:, None]

    x = (x - offset_x) * scale_x
    x = x.floor().long()
    y = (y - offset_y) * scale_y
    y = y.floor().long()

    x[x_boundary_inds] = heatmap_size - 1
    y[y_boundary_inds] = heatmap_size - 1

    valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
    vis = keypoints[..., 2] > 0
    valid = (valid_loc & vis).long()

    lin_ind = y * heatmap_size + x
    heatmaps = lin_ind * valid

    return heatmaps, valid