File size: 6,570 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn

from maskrcnn_benchmark.modeling import registry
from maskrcnn_benchmark.modeling.box_coder import BoxCoder
from .loss import make_rpn_loss_evaluator
from .anchor_generator import make_anchor_generator
from .inference import make_rpn_postprocessor


@registry.RPN_HEADS.register("SimpleRPNHead")
class mRPNHead(nn.Module):
    """

    Adds a simple RPN Head with classification and regression heads

    """

    def __init__(self, cfg, in_channels, num_anchors):
        """

        Arguments:

            cfg              : config

            in_channels (int): number of channels of the input feature

            num_anchors (int): number of anchors to be predicted

        """
        super(mRPNHead, self).__init__()
        self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
        self.bbox_pred = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=1, stride=1)

        for l in [self.cls_logits, self.bbox_pred]:
            torch.nn.init.normal_(l.weight, std=0.01)
            torch.nn.init.constant_(l.bias, 0)

    def forward(self, x):
        logits = []
        bbox_reg = []
        for feature in x:
            t = F.relu(feature)
            logits.append(self.cls_logits(t))
            bbox_reg.append(self.bbox_pred(t))
        return logits, bbox_reg


@registry.RPN_HEADS.register("SingleConvRPNHead")
class RPNHead(nn.Module):
    """

    Adds a simple RPN Head with classification and regression heads

    """

    def __init__(self, cfg, in_channels, num_anchors):
        """

        Arguments:

            cfg              : config

            in_channels (int): number of channels of the input feature

            num_anchors (int): number of anchors to be predicted

        """
        super(RPNHead, self).__init__()
        self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
        self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
        self.bbox_pred = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=1, stride=1)

        for l in [self.conv, self.cls_logits, self.bbox_pred]:
            torch.nn.init.normal_(l.weight, std=0.01)
            torch.nn.init.constant_(l.bias, 0)

    def forward(self, x):
        logits = []
        bbox_reg = []
        for feature in x:
            t = F.relu(self.conv(feature))
            logits.append(self.cls_logits(t))
            bbox_reg.append(self.bbox_pred(t))
        return logits, bbox_reg


class RPNModule(torch.nn.Module):
    """

    Module for RPN computation. Takes feature maps from the backbone and RPN

    proposals and losses. Works for both FPN and non-FPN.

    """

    def __init__(self, cfg):
        super(RPNModule, self).__init__()

        self.cfg = cfg.clone()

        anchor_generator = make_anchor_generator(cfg)

        in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS
        rpn_head = registry.RPN_HEADS[cfg.MODEL.RPN.RPN_HEAD]
        head = rpn_head(cfg, in_channels, anchor_generator.num_anchors_per_location()[0])

        rpn_box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))

        box_selector_train = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=True)
        box_selector_test = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=False)

        loss_evaluator = make_rpn_loss_evaluator(cfg, rpn_box_coder)

        self.anchor_generator = anchor_generator
        self.head = head
        self.box_selector_train = box_selector_train
        self.box_selector_test = box_selector_test
        self.loss_evaluator = loss_evaluator

    def forward(self, images, features, targets=None):
        """

        Arguments:

            images (ImageList): images for which we want to compute the predictions

            features (list[Tensor]): features computed from the images that are

                used for computing the predictions. Each tensor in the list

                correspond to different feature levels

            targets (list[BoxList): ground-truth boxes present in the image (optional)



        Returns:

            boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per

                image.

            losses (dict[Tensor]): the losses for the model during training. During

                testing, it is an empty dict.

        """
        objectness, rpn_box_regression = self.head(features)
        anchors = self.anchor_generator(images, features)

        if self.training:
            return self._forward_train(anchors, objectness, rpn_box_regression, targets)
        else:
            return self._forward_test(anchors, objectness, rpn_box_regression)

    def _forward_train(self, anchors, objectness, rpn_box_regression, targets):
        if self.cfg.MODEL.RPN_ONLY:
            # When training an RPN-only model, the loss is determined by the
            # predicted objectness and rpn_box_regression values and there is
            # no need to transform the anchors into predicted boxes; this is an
            # optimization that avoids the unnecessary transformation.
            boxes = anchors
        else:
            # For end-to-end models, anchors must be transformed into boxes and
            # sampled into a training batch.
            with torch.no_grad():
                boxes = self.box_selector_train(anchors, objectness, rpn_box_regression, targets)
        loss_objectness, loss_rpn_box_reg = self.loss_evaluator(anchors, objectness, rpn_box_regression, targets)
        losses = {
            "loss_objectness": loss_objectness,
            "loss_rpn_box_reg": loss_rpn_box_reg,
        }
        return boxes, losses

    def _forward_test(self, anchors, objectness, rpn_box_regression):
        boxes = self.box_selector_test(anchors, objectness, rpn_box_regression)
        if self.cfg.MODEL.RPN_ONLY:
            # For end-to-end models, the RPN proposals are an intermediate state
            # and don't bother to sort them in decreasing score order. For RPN-only
            # models, the proposals are the final output and we return them in
            # high-to-low confidence order.
            inds = [box.get_field("objectness").sort(descending=True)[1] for box in boxes]
            boxes = [box[ind] for box, ind in zip(boxes, inds)]
        return boxes, {}