File size: 16,452 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/*!

 * Copyright (c) 2017 Microsoft

 * Licensed under The MIT License [see LICENSE for details]

 * \file deformable_psroi_pooling.cu

 * \brief

 * \author Yi Li, Guodong Zhang, Jifeng Dai

*/
/***************** Adapted by Charles Shang *********************/
// modify from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/cuda/deform_psroi_pooling_cuda.cu


#include <ATen/ATen.h>
#include <THC/THCAtomics.cuh>
#include <stdio.h>
#include <math.h>
#include <algorithm>

using namespace at;

#define CUDA_KERNEL_LOOP(i, n)                        \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
       i < (n);                                       \
       i += blockDim.x * gridDim.x)

const int CUDA_NUM_THREADS = 1024;
inline int GET_BLOCKS(const int N)

{
  return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
}

template <typename scalar_t>
__device__ scalar_t bilinear_interp(

    const scalar_t *data,

    const scalar_t x,

    const scalar_t y,

    const int width,

    const int height)

{
  int x1 = floor(x);
  int x2 = ceil(x);
  int y1 = floor(y);
  int y2 = ceil(y);
  scalar_t dist_x = (scalar_t)(x - x1);
  scalar_t dist_y = (scalar_t)(y - y1);
  scalar_t value11 = data[y1 * width + x1];
  scalar_t value12 = data[y2 * width + x1];
  scalar_t value21 = data[y1 * width + x2];
  scalar_t value22 = data[y2 * width + x2];
  scalar_t value = (1 - dist_x) * (1 - dist_y) * value11 + (1 - dist_x) * dist_y * value12 + dist_x * (1 - dist_y) * value21 + dist_x * dist_y * value22;
  return value;
}

template <typename scalar_t>
__global__ void DeformablePSROIPoolForwardKernel(

    const int count,

    const scalar_t *bottom_data,

    const scalar_t spatial_scale,

    const int channels,

    const int height, const int width,

    const int pooled_height, const int pooled_width,

    const scalar_t *bottom_rois, const scalar_t *bottom_trans,

    const int no_trans,

    const scalar_t trans_std,

    const int sample_per_part,

    const int output_dim,

    const int group_size,

    const int part_size,

    const int num_classes,

    const int channels_each_class,

    scalar_t *top_data,

    scalar_t *top_count)

{
  CUDA_KERNEL_LOOP(index, count)
  {
    // The output is in order (n, ctop, ph, pw)
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int ctop = (index / pooled_width / pooled_height) % output_dim;
    int n = index / pooled_width / pooled_height / output_dim;

    // [start, end) interval for spatial sampling
    const scalar_t *offset_bottom_rois = bottom_rois + n * 5;
    int roi_batch_ind = offset_bottom_rois[0];
    scalar_t roi_start_w = (scalar_t)(round(offset_bottom_rois[1])) * spatial_scale - 0.5;
    scalar_t roi_start_h = (scalar_t)(round(offset_bottom_rois[2])) * spatial_scale - 0.5;
    scalar_t roi_end_w = (scalar_t)(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5;
    scalar_t roi_end_h = (scalar_t)(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5;

    // Force too small ROIs to be 1x1
    scalar_t roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0
    scalar_t roi_height = max(roi_end_h - roi_start_h, 0.1);

    // Compute w and h at bottom
    scalar_t bin_size_h = roi_height / (scalar_t)(pooled_height);
    scalar_t bin_size_w = roi_width / (scalar_t)(pooled_width);

    scalar_t sub_bin_size_h = bin_size_h / (scalar_t)(sample_per_part);
    scalar_t sub_bin_size_w = bin_size_w / (scalar_t)(sample_per_part);

    int part_h = floor((scalar_t)(ph) / pooled_height * part_size);
    int part_w = floor((scalar_t)(pw) / pooled_width * part_size);
    int class_id = ctop / channels_each_class;
    scalar_t trans_x = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std;
    scalar_t trans_y = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std;

    scalar_t wstart = (scalar_t)(pw)*bin_size_w + roi_start_w;
    wstart += trans_x * roi_width;
    scalar_t hstart = (scalar_t)(ph)*bin_size_h + roi_start_h;
    hstart += trans_y * roi_height;

    scalar_t sum = 0;
    int count = 0;
    int gw = floor((scalar_t)(pw)*group_size / pooled_width);
    int gh = floor((scalar_t)(ph)*group_size / pooled_height);
    gw = min(max(gw, 0), group_size - 1);
    gh = min(max(gh, 0), group_size - 1);

    const scalar_t *offset_bottom_data = bottom_data + (roi_batch_ind * channels) * height * width;
    for (int ih = 0; ih < sample_per_part; ih++)
    {
      for (int iw = 0; iw < sample_per_part; iw++)
      {
        scalar_t w = wstart + iw * sub_bin_size_w;
        scalar_t h = hstart + ih * sub_bin_size_h;
        // bilinear interpolation
        if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5)
        {
          continue;
        }
        w = min(max(w, 0.), width - 1.);
        h = min(max(h, 0.), height - 1.);
        int c = (ctop * group_size + gh) * group_size + gw;
        scalar_t val = bilinear_interp(offset_bottom_data + c * height * width, w, h, width, height);
        sum += val;
        count++;
      }
    }
    top_data[index] = count == 0 ? (scalar_t)(0) : sum / count;
    top_count[index] = count;
  }
}

template <typename scalar_t>
__global__ void DeformablePSROIPoolBackwardAccKernel(

    const int count,

    const scalar_t *top_diff,

    const scalar_t *top_count,

    const int num_rois,

    const scalar_t spatial_scale,

    const int channels,

    const int height, const int width,

    const int pooled_height, const int pooled_width,

    const int output_dim,

    scalar_t *bottom_data_diff, scalar_t *bottom_trans_diff,

    const scalar_t *bottom_data,

    const scalar_t *bottom_rois,

    const scalar_t *bottom_trans,

    const int no_trans,

    const scalar_t trans_std,

    const int sample_per_part,

    const int group_size,

    const int part_size,

    const int num_classes,

    const int channels_each_class)

{
  CUDA_KERNEL_LOOP(index, count)
  {
    // The output is in order (n, ctop, ph, pw)
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int ctop = (index / pooled_width / pooled_height) % output_dim;
    int n = index / pooled_width / pooled_height / output_dim;

    // [start, end) interval for spatial sampling
    const scalar_t *offset_bottom_rois = bottom_rois + n * 5;
    int roi_batch_ind = offset_bottom_rois[0];
    scalar_t roi_start_w = (scalar_t)(round(offset_bottom_rois[1])) * spatial_scale - 0.5;
    scalar_t roi_start_h = (scalar_t)(round(offset_bottom_rois[2])) * spatial_scale - 0.5;
    scalar_t roi_end_w = (scalar_t)(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5;
    scalar_t roi_end_h = (scalar_t)(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5;

    // Force too small ROIs to be 1x1
    scalar_t roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0
    scalar_t roi_height = max(roi_end_h - roi_start_h, 0.1);

    // Compute w and h at bottom
    scalar_t bin_size_h = roi_height / (scalar_t)(pooled_height);
    scalar_t bin_size_w = roi_width / (scalar_t)(pooled_width);

    scalar_t sub_bin_size_h = bin_size_h / (scalar_t)(sample_per_part);
    scalar_t sub_bin_size_w = bin_size_w / (scalar_t)(sample_per_part);

    int part_h = floor((scalar_t)(ph) / pooled_height * part_size);
    int part_w = floor((scalar_t)(pw) / pooled_width * part_size);
    int class_id = ctop / channels_each_class;
    scalar_t trans_x = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std;
    scalar_t trans_y = no_trans ? (scalar_t)(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * (scalar_t)trans_std;

    scalar_t wstart = (scalar_t)(pw)*bin_size_w + roi_start_w;
    wstart += trans_x * roi_width;
    scalar_t hstart = (scalar_t)(ph)*bin_size_h + roi_start_h;
    hstart += trans_y * roi_height;

    if (top_count[index] <= 0)
    {
      continue;
    }
    scalar_t diff_val = top_diff[index] / top_count[index];
    const scalar_t *offset_bottom_data = bottom_data + roi_batch_ind * channels * height * width;
    scalar_t *offset_bottom_data_diff = bottom_data_diff + roi_batch_ind * channels * height * width;
    int gw = floor((scalar_t)(pw)*group_size / pooled_width);
    int gh = floor((scalar_t)(ph)*group_size / pooled_height);
    gw = min(max(gw, 0), group_size - 1);
    gh = min(max(gh, 0), group_size - 1);

    for (int ih = 0; ih < sample_per_part; ih++)
    {
      for (int iw = 0; iw < sample_per_part; iw++)
      {
        scalar_t w = wstart + iw * sub_bin_size_w;
        scalar_t h = hstart + ih * sub_bin_size_h;
        // bilinear interpolation
        if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5)
        {
          continue;
        }
        w = min(max(w, 0.), width - 1.);
        h = min(max(h, 0.), height - 1.);
        int c = (ctop * group_size + gh) * group_size + gw;
        // backward on feature
        int x0 = floor(w);
        int x1 = ceil(w);
        int y0 = floor(h);
        int y1 = ceil(h);
        scalar_t dist_x = w - x0, dist_y = h - y0;
        scalar_t q00 = (1 - dist_x) * (1 - dist_y);
        scalar_t q01 = (1 - dist_x) * dist_y;
        scalar_t q10 = dist_x * (1 - dist_y);
        scalar_t q11 = dist_x * dist_y;
        int bottom_index_base = c * height * width;
        atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x0, q00 * diff_val);
        atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x0, q01 * diff_val);
        atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x1, q10 * diff_val);
        atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x1, q11 * diff_val);

        if (no_trans)
        {
          continue;
        }
        scalar_t U00 = offset_bottom_data[bottom_index_base + y0 * width + x0];
        scalar_t U01 = offset_bottom_data[bottom_index_base + y1 * width + x0];
        scalar_t U10 = offset_bottom_data[bottom_index_base + y0 * width + x1];
        scalar_t U11 = offset_bottom_data[bottom_index_base + y1 * width + x1];
        scalar_t diff_x = (U11 * dist_y + U10 * (1 - dist_y) - U01 * dist_y - U00 * (1 - dist_y)) * trans_std * diff_val;
        diff_x *= roi_width;
        scalar_t diff_y = (U11 * dist_x + U01 * (1 - dist_x) - U10 * dist_x - U00 * (1 - dist_x)) * trans_std * diff_val;
        diff_y *= roi_height;

        atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w, diff_x);
        atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w, diff_y);
      }
    }
  }
}

void DeformablePSROIPoolForward(const at::Tensor data,

                                const at::Tensor bbox,

                                const at::Tensor trans,

                                at::Tensor out,

                                at::Tensor top_count,

                                const int batch,

                                const int channels,

                                const int height,

                                const int width,

                                const int num_bbox,

                                const int channels_trans,

                                const int no_trans,

                                const float spatial_scale,

                                const int output_dim,

                                const int group_size,

                                const int pooled_size,

                                const int part_size,

                                const int sample_per_part,

                                const float trans_std)

{
  const int pooled_height = pooled_size;
  const int pooled_width = pooled_size;
  const int count = num_bbox * output_dim * pooled_height * pooled_width;
  const int num_classes = no_trans ? 1 : channels_trans / 2;
  const int channels_each_class = no_trans ? output_dim : output_dim / num_classes;

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      data.scalar_type(), "deformable_psroi_pool_forward", ([&] {
        const scalar_t *bottom_data = data.data_ptr<scalar_t>();
        const scalar_t *bottom_rois = bbox.data_ptr<scalar_t>();
        const scalar_t *bottom_trans = no_trans ? NULL : trans.data_ptr<scalar_t>();
        scalar_t *top_data = out.data_ptr<scalar_t>();
        scalar_t *top_count_data = top_count.data_ptr<scalar_t>();

        DeformablePSROIPoolForwardKernel<<<GET_BLOCKS(count), CUDA_NUM_THREADS>>>(
            count, bottom_data, (scalar_t)spatial_scale, channels, height, width, pooled_height, pooled_width,
            bottom_rois, bottom_trans, no_trans, (scalar_t)trans_std, sample_per_part, output_dim,
            group_size, part_size, num_classes, channels_each_class, top_data, top_count_data);
      }));

  cudaError_t err = cudaGetLastError();
  if (err != cudaSuccess)
  {
    printf("error in DeformablePSROIPoolForward: %s\n", cudaGetErrorString(err));
  }
}

void DeformablePSROIPoolBackwardAcc(const at::Tensor out_grad,

                                    const at::Tensor data,

                                    const at::Tensor bbox,

                                    const at::Tensor trans,

                                    const at::Tensor top_count,

                                    at::Tensor in_grad,

                                    at::Tensor trans_grad,

                                    const int batch,

                                    const int channels,

                                    const int height,

                                    const int width,

                                    const int num_bbox,

                                    const int channels_trans,

                                    const int no_trans,

                                    const float spatial_scale,

                                    const int output_dim,

                                    const int group_size,

                                    const int pooled_size,

                                    const int part_size,

                                    const int sample_per_part,

                                    const float trans_std)

{
  // LOG(INFO) << "DeformablePSROIPoolBackward";
  const int num_rois = num_bbox;
  const int pooled_height = pooled_size;
  const int pooled_width = pooled_size;
  const int count = num_bbox * output_dim * pooled_height * pooled_width;
  const int num_classes = no_trans ? 1 : channels_trans / 2;
  const int channels_each_class = no_trans ? output_dim : output_dim / num_classes;

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      out_grad.scalar_type(), "deformable_psroi_pool_backward_acc", ([&] {
        const scalar_t *top_diff = out_grad.data_ptr<scalar_t>();
        const scalar_t *bottom_data = data.data_ptr<scalar_t>();
        const scalar_t *bottom_rois = bbox.data_ptr<scalar_t>();
        const scalar_t *bottom_trans = no_trans ? NULL : trans.data_ptr<scalar_t>();
        scalar_t *bottom_data_diff = in_grad.data_ptr<scalar_t>();
        scalar_t *bottom_trans_diff = no_trans ? NULL : trans_grad.data_ptr<scalar_t>();
        const scalar_t *top_count_data = top_count.data_ptr<scalar_t>();

        DeformablePSROIPoolBackwardAccKernel<<<GET_BLOCKS(count), CUDA_NUM_THREADS>>>(
            count, top_diff, top_count_data, num_rois, (scalar_t)spatial_scale, channels, height, width,
            pooled_height, pooled_width, output_dim, bottom_data_diff, bottom_trans_diff,
            bottom_data, bottom_rois, bottom_trans, no_trans, (scalar_t)trans_std, sample_per_part,
            group_size, part_size, num_classes, channels_each_class);
      }));

  cudaError_t err = cudaGetLastError();
  if (err != cudaSuccess)
  {
    printf("error in DeformablePSROIPoolForward: %s\n", cudaGetErrorString(err));
  }
}