File size: 20,808 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import cv2
import torch
import numpy as np
from torchvision import transforms as T

from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker
from maskrcnn_benchmark import layers as L
from maskrcnn_benchmark.utils import cv2_util


import timeit


class COCODemo(object):
    # COCO categories for pretty print
    CATEGORIES = [
        "__background",
        "person",
        "bicycle",
        "car",
        "motorcycle",
        "airplane",
        "bus",
        "train",
        "truck",
        "boat",
        "traffic light",
        "fire hydrant",
        "stop sign",
        "parking meter",
        "bench",
        "bird",
        "cat",
        "dog",
        "horse",
        "sheep",
        "cow",
        "elephant",
        "bear",
        "zebra",
        "giraffe",
        "backpack",
        "umbrella",
        "handbag",
        "tie",
        "suitcase",
        "frisbee",
        "skis",
        "snowboard",
        "sports ball",
        "kite",
        "baseball bat",
        "baseball glove",
        "skateboard",
        "surfboard",
        "tennis racket",
        "bottle",
        "wine glass",
        "cup",
        "fork",
        "knife",
        "spoon",
        "bowl",
        "banana",
        "apple",
        "sandwich",
        "orange",
        "broccoli",
        "carrot",
        "hot dog",
        "pizza",
        "donut",
        "cake",
        "chair",
        "couch",
        "potted plant",
        "bed",
        "dining table",
        "toilet",
        "tv",
        "laptop",
        "mouse",
        "remote",
        "keyboard",
        "cell phone",
        "microwave",
        "oven",
        "toaster",
        "sink",
        "refrigerator",
        "book",
        "clock",
        "vase",
        "scissors",
        "teddy bear",
        "hair drier",
        "toothbrush",
    ]

    def __init__(

        self,

        cfg,

        confidence_threshold=0.7,

        show_mask_heatmaps=False,

        masks_per_dim=2,

        min_image_size=None,

        exclude_region=None,

    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2**25 - 1, 2**15 - 1, 2**21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim
        self.exclude_region = exclude_region

    def build_transform(self):
        """

        Creates a basic transformation that was used to train the models

        """
        cfg = self.cfg

        # we are loading images with OpenCV, so we don't need to convert them
        # to BGR, they are already! So all we need to do is to normalize
        # by 255 if we want to convert to BGR255 format, or flip the channels
        # if we want it to be in RGB in [0-1] range.
        if cfg.INPUT.TO_BGR255:
            to_bgr_transform = T.Lambda(lambda x: x * 255)
        else:
            to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])

        normalize_transform = T.Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD)

        transform = T.Compose(
            [
                T.ToPILImage(),
                T.Resize(self.min_image_size) if self.min_image_size is not None else lambda x: x,
                T.ToTensor(),
                to_bgr_transform,
                normalize_transform,
            ]
        )
        return transform

    def inference(self, image, debug=False):
        """

        Arguments:

            image (np.ndarray): an image as returned by OpenCV



        Returns:

            prediction (BoxList): the detected objects. Additional information

                of the detection properties can be found in the fields of

                the BoxList via `prediction.fields()`

        """
        predictions, debug_info = self.compute_prediction(image)
        top_predictions = self.select_top_predictions(predictions)

        if debug:
            return top_predictions, debug_info
        else:
            return top_predictions

    def run_on_opencv_image(self, image):
        """

        Arguments:

            image (np.ndarray): an image as returned by OpenCV



        Returns:

            prediction (BoxList): the detected objects. Additional information

                of the detection properties can be found in the fields of

                the BoxList via `prediction.fields()`

        """
        predictions, debug_info = self.compute_prediction(image)
        top_predictions = self.select_top_predictions(predictions)

        result = image.copy()
        if self.show_mask_heatmaps:
            return self.create_mask_montage(result, top_predictions)
        result = self.overlay_boxes(result, top_predictions)
        if self.cfg.MODEL.MASK_ON:
            result = self.overlay_mask(result, top_predictions)
        if self.cfg.MODEL.KEYPOINT_ON:
            result = self.overlay_keypoints(result, top_predictions)
        result = self.overlay_class_names(result, top_predictions)

        return result, debug_info, top_predictions

    def compute_prediction(self, original_image):
        """

        Arguments:

            original_image (np.ndarray): an image as returned by OpenCV



        Returns:

            prediction (BoxList): the detected objects. Additional information

                of the detection properties can be found in the fields of

                the BoxList via `prediction.fields()`

        """
        # apply pre-processing to image
        # if self.exclude_region:
        #     for region in self.exclude_region:
        #         original_image[region[1]:region[3], region[0]:region[2], :] = 255
        image = self.transforms(original_image)

        # convert to an ImageList, padded so that it is divisible by
        # cfg.DATALOADER.SIZE_DIVISIBILITY
        image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY)
        image_list = image_list.to(self.device)
        tic = timeit.time.perf_counter()

        # compute predictions
        with torch.no_grad():
            predictions, debug_info = self.model(image_list)
        predictions = [o.to(self.cpu_device) for o in predictions]
        debug_info["total_time"] = timeit.time.perf_counter() - tic

        # always single image is passed at a time
        prediction = predictions[0]

        # reshape prediction (a BoxList) into the original image size
        height, width = original_image.shape[:-1]
        prediction = prediction.resize((width, height))

        if prediction.has_field("mask"):
            # if we have masks, paste the masks in the right position
            # in the image, as defined by the bounding boxes
            masks = prediction.get_field("mask")
            # always single image is passed at a time
            masks = self.masker([masks], [prediction])[0]
            prediction.add_field("mask", masks)

        return prediction, debug_info

    def select_top_predictions(self, predictions):
        """

        Select only predictions which have a `score` > self.confidence_threshold,

        and returns the predictions in descending order of score



        Arguments:

            predictions (BoxList): the result of the computation by the model.

                It should contain the field `scores`.



        Returns:

            prediction (BoxList): the detected objects. Additional information

                of the detection properties can be found in the fields of

                the BoxList via `prediction.fields()`

        """

        scores = predictions.get_field("scores")
        labels = predictions.get_field("labels").tolist()
        thresh = scores.clone()
        for i, lb in enumerate(labels):
            if isinstance(self.confidence_threshold, float):
                thresh[i] = self.confidence_threshold
            elif len(self.confidence_threshold) == 1:
                thresh[i] = self.confidence_threshold[0]
            else:
                thresh[i] = self.confidence_threshold[lb - 1]
        keep = torch.nonzero(scores > thresh).squeeze(1)
        predictions = predictions[keep]

        if self.exclude_region:
            exlude = BoxList(self.exclude_region, predictions.size)
            iou = boxlist_iou(exlude, predictions)
            keep = torch.nonzero(torch.sum(iou > 0.5, dim=0) == 0).squeeze(1)
            if len(keep) > 0:
                predictions = predictions[keep]

        scores = predictions.get_field("scores")
        _, idx = scores.sort(0, descending=True)
        return predictions[idx]

    def compute_colors_for_labels(self, labels):
        """

        Simple function that adds fixed colors depending on the class

        """
        colors = (30 * (labels[:, None] - 1) + 1) * self.palette
        colors = (colors % 255).numpy().astype("uint8")
        return colors

    def overlay_boxes(self, image, predictions):
        """

        Adds the predicted boxes on top of the image



        Arguments:

            image (np.ndarray): an image as returned by OpenCV

            predictions (BoxList): the result of the computation by the model.

                It should contain the field `labels`.

        """
        labels = predictions.get_field("labels")
        boxes = predictions.bbox

        colors = self.compute_colors_for_labels(labels).tolist()

        for box, color in zip(boxes, colors):
            box = box.to(torch.int64)
            top_left, bottom_right = box[:2].tolist(), box[2:].tolist()
            image = cv2.rectangle(image, tuple(top_left), tuple(bottom_right), tuple(color), 2)

        return image

    def overlay_scores(self, image, predictions):
        """

        Adds the predicted boxes on top of the image



        Arguments:

            image (np.ndarray): an image as returned by OpenCV

            predictions (BoxList): the result of the computation by the model.

                It should contain the field `labels`.

        """
        scores = predictions.get_field("scores")
        boxes = predictions.bbox

        for box, score in zip(boxes, scores):
            box = box.to(torch.int64)
            image = cv2.putText(
                image,
                "%.3f" % score,
                (box[0], (box[1] + box[3]) / 2),
                cv2.FONT_HERSHEY_SIMPLEX,
                0.5,
                (255, 255, 255),
                1,
            )

        return image

    def overlay_cboxes(self, image, predictions):
        """

        Adds the predicted boxes on top of the image



        Arguments:

            image (np.ndarray): an image as returned by OpenCV

            predictions (BoxList): the result of the computation by the model.

                It should contain the field `labels`.

        """
        scores = predictions.get_field("scores")
        boxes = predictions.bbox
        for box, score in zip(boxes, scores):
            box = box.to(torch.int64)
            top_left, bottom_right = box[:2].tolist(), box[2:].tolist()
            image = cv2.rectangle(image, tuple(top_left), tuple(bottom_right), (255, 0, 0), 2)
            image = cv2.putText(
                image, "%.3f" % score, (box[0], (box[1] + box[3]) / 2), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1
            )
        return image

    def overlay_centers(self, image, predictions):
        """

        Adds the predicted boxes on top of the image



        Arguments:

            image (np.ndarray): an image as returned by OpenCV

            predictions (BoxList): the result of the computation by the model.

                It should contain the field `labels`.

        """
        centers = predictions.get_field("centers")

        for cord in centers:
            cord = cord.to(torch.int64)
            image = cv2.circle(image, (cord[0].item(), cord[1].item()), 2, (255, 0, 0), 20)

        return image

    def overlay_count(self, image, predictions):
        """

        Adds the predicted boxes on top of the image



        Arguments:

            image (np.ndarray): an image as returned by OpenCV

            predictions (BoxList): the result of the computation by the model.

                It should contain the field `labels`.

        """
        if isinstance(predictions, int):
            count = predictions
        else:
            count = len(predictions)
        image = cv2.putText(image, "Count: %d" % count, (0, 100), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 0), 3)

        return image

    def overlay_mask(self, image, predictions):
        """

        Adds the instances contours for each predicted object.

        Each label has a different color.



        Arguments:

            image (np.ndarray): an image as returned by OpenCV

            predictions (BoxList): the result of the computation by the model.

                It should contain the field `mask` and `labels`.

        """
        masks = predictions.get_field("mask").numpy()
        labels = predictions.get_field("labels")

        colors = self.compute_colors_for_labels(labels).tolist()

        for mask, color in zip(masks, colors):
            thresh = mask[0, :, :, None].astype(np.uint8)
            contours, hierarchy = cv2_util.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
            image = cv2.drawContours(image, contours, -1, color, 3)

        composite = image

        return composite

    def overlay_keypoints(self, image, predictions):
        keypoints = predictions.get_field("keypoints")
        kps = keypoints.keypoints
        scores = keypoints.get_field("logits")
        kps = torch.cat((kps[:, :, 0:2], scores[:, :, None]), dim=2).numpy()
        for region in kps:
            image = vis_keypoints(
                image, region.transpose((1, 0)), names=keypoints.NAMES, connections=keypoints.CONNECTIONS
            )
        return image

    def create_mask_montage(self, image, predictions):
        """

        Create a montage showing the probability heatmaps for each one one of the

        detected objects



        Arguments:

            image (np.ndarray): an image as returned by OpenCV

            predictions (BoxList): the result of the computation by the model.

                It should contain the field `mask`.

        """
        masks = predictions.get_field("mask")
        masks_per_dim = self.masks_per_dim
        masks = L.interpolate(masks.float(), scale_factor=1 / masks_per_dim).byte()
        height, width = masks.shape[-2:]
        max_masks = masks_per_dim**2
        masks = masks[:max_masks]
        # handle case where we have less detections than max_masks
        if len(masks) < max_masks:
            masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8)
            masks_padded[: len(masks)] = masks
            masks = masks_padded
        masks = masks.reshape(masks_per_dim, masks_per_dim, height, width)
        result = torch.zeros((masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8)
        for y in range(masks_per_dim):
            start_y = y * height
            end_y = (y + 1) * height
            for x in range(masks_per_dim):
                start_x = x * width
                end_x = (x + 1) * width
                result[start_y:end_y, start_x:end_x] = masks[y, x]
        return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET)

    def overlay_class_names(self, image, predictions, names=None):
        """

        Adds detected class names and scores in the positions defined by the

        top-left corner of the predicted bounding box



        Arguments:

            image (np.ndarray): an image as returned by OpenCV

            predictions (BoxList): the result of the computation by the model.

                It should contain the field `scores` and `labels`.

        """
        scores = predictions.get_field("scores").tolist()
        labels = predictions.get_field("labels").tolist()
        if names:
            labels = [names[i - 1] for i in labels]
        else:
            labels = [self.CATEGORIES[i] for i in labels]
        boxes = predictions.bbox

        template = "{}: {:.2f}"
        for box, score, label in zip(boxes, scores, labels):
            x, y = box[:2]
            s = template.format(label, score)
            cv2.putText(image, s, (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)

        return image


def vis_keypoints(img, kps, kp_thresh=0, alpha=0.7, names=None, connections=None):
    """Visualizes keypoints (adapted from vis_one_image).

    kps has shape (4, #keypoints) where 4 rows are (x, y, logit, prob).

    """

    dataset_keypoints = names
    kp_lines = connections

    # simple rainbow color map implementation
    blue_red_ratio = 0.8
    gx = lambda x: (6 - 2 * blue_red_ratio) * x + blue_red_ratio
    colors = [
        [
            256 * max(0, (3 - abs(gx(i) - 4) - abs(gx(i) - 5)) / 2),
            256 * max(0, (3 - abs(gx(i) - 2) - abs(gx(i) - 4)) / 2),
            256 * max(0, (3 - abs(gx(i) - 1) - abs(gx(i) - 2)) / 2),
        ]
        for i in np.linspace(0, 1, len(kp_lines) + 2)
    ]

    # Perform the drawing on a copy of the image, to allow for blending.
    kp_mask = np.copy(img)

    # Draw mid shoulder / mid hip first for better visualization.
    mid_shoulder = (
        kps[:2, dataset_keypoints.index("right_shoulder")] + kps[:2, dataset_keypoints.index("left_shoulder")]
    ) / 2.0
    sc_mid_shoulder = np.minimum(
        kps[2, dataset_keypoints.index("right_shoulder")], kps[2, dataset_keypoints.index("left_shoulder")]
    )
    nose_idx = dataset_keypoints.index("nose")
    if sc_mid_shoulder > kp_thresh and kps[2, nose_idx] > kp_thresh:
        cv2.line(
            kp_mask,
            tuple(mid_shoulder),
            tuple(kps[:2, nose_idx]),
            color=colors[len(kp_lines)],
            thickness=2,
            lineType=cv2.LINE_AA,
        )

    if "right_hip" in names and "left_hip" in names:
        mid_hip = (kps[:2, dataset_keypoints.index("right_hip")] + kps[:2, dataset_keypoints.index("left_hip")]) / 2.0
        sc_mid_hip = np.minimum(
            kps[2, dataset_keypoints.index("right_hip")], kps[2, dataset_keypoints.index("left_hip")]
        )
        if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh:
            cv2.line(
                kp_mask,
                tuple(mid_shoulder),
                tuple(mid_hip),
                color=colors[len(kp_lines) + 1],
                thickness=2,
                lineType=cv2.LINE_AA,
            )

    # Draw the keypoints.
    for l in range(len(kp_lines)):
        i1 = kp_lines[l][0]
        i2 = kp_lines[l][1]
        p1 = kps[0, i1], kps[1, i1]
        p2 = kps[0, i2], kps[1, i2]
        if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh:
            cv2.line(kp_mask, p1, p2, color=colors[l], thickness=2, lineType=cv2.LINE_AA)
        if kps[2, i1] > kp_thresh:
            cv2.circle(kp_mask, p1, radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)
        if kps[2, i2] > kp_thresh:
            cv2.circle(kp_mask, p2, radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)

    # Blend the keypoints.
    return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)