File size: 12,090 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch.nn as nn
import torch

from maskrcnn_benchmark.layers import swish


class BiFPN(nn.Module):
    def __init__(self, in_channels_list, out_channels, first_time=False, epsilon=1e-4, attention=True):
        super(BiFPN, self).__init__()
        self.epsilon = epsilon
        # Conv layers
        self.conv6_up = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False),
            nn.Conv2d(out_channels, out_channels, 1),
            nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
        )
        self.conv5_up = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False),
            nn.Conv2d(out_channels, out_channels, 1),
            nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
        )
        self.conv4_up = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False),
            nn.Conv2d(out_channels, out_channels, 1),
            nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
        )
        self.conv3_up = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False),
            nn.Conv2d(out_channels, out_channels, 1),
            nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
        )
        self.conv4_down = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False),
            nn.Conv2d(out_channels, out_channels, 1),
            nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
        )
        self.conv5_down = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False),
            nn.Conv2d(out_channels, out_channels, 1),
            nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
        )
        self.conv6_down = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False),
            nn.Conv2d(out_channels, out_channels, 1),
            nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
        )
        self.conv7_down = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, 3, groups=out_channels, bias=False),
            nn.Conv2d(out_channels, out_channels, 1),
            nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
        )

        # Feature scaling layers
        self.p6_upsample = nn.Upsample(scale_factor=2, mode="nearest")
        self.p5_upsample = nn.Upsample(scale_factor=2, mode="nearest")
        self.p4_upsample = nn.Upsample(scale_factor=2, mode="nearest")
        self.p3_upsample = nn.Upsample(scale_factor=2, mode="nearest")

        self.p4_downsample = nn.MaxPool2d(3, 2)
        self.p5_downsample = nn.MaxPool2d(3, 2)
        self.p6_downsample = nn.MaxPool2d(3, 2)
        self.p7_downsample = nn.MaxPool2d(3, 2)

        self.swish = swish()

        self.first_time = first_time
        if self.first_time:
            self.p5_down_channel = nn.Sequential(
                nn.Conv2d(in_channels_list[2], out_channels, 1),
                nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
            )
            self.p4_down_channel = nn.Sequential(
                nn.Conv2d(in_channels_list[1], out_channels, 1),
                nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
            )
            self.p3_down_channel = nn.Sequential(
                nn.Conv2d(in_channels_list[0], out_channels, 1),
                nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
            )

            self.p5_to_p6 = nn.Sequential(
                nn.Conv2d(in_channels_list[2], out_channels, 1),
                nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
                nn.MaxPool2d(3, 2),
            )
            self.p6_to_p7 = nn.Sequential(nn.MaxPool2d(3, 2))

            self.p4_down_channel_2 = nn.Sequential(
                nn.Conv2d(in_channels_list[1], out_channels, 1),
                nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
            )
            self.p5_down_channel_2 = nn.Sequential(
                nn.Conv2d(in_channels_list[2], out_channels, 1),
                nn.BatchNorm2d(out_channels, momentum=0.01, eps=1e-3),
            )

        # Weight
        self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p6_w1_relu = nn.ReLU()
        self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p5_w1_relu = nn.ReLU()
        self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p4_w1_relu = nn.ReLU()
        self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p3_w1_relu = nn.ReLU()

        self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p4_w2_relu = nn.ReLU()
        self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p5_w2_relu = nn.ReLU()
        self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.p6_w2_relu = nn.ReLU()
        self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.p7_w2_relu = nn.ReLU()

        self.attention = attention

    def forward(self, inputs):
        """

        illustration of a minimal bifpn unit

            P7_0 -------------------------> P7_2 -------->

               |-------------|                ↑

                             ↓                |

            P6_0 ---------> P6_1 ---------> P6_2 -------->

               |-------------|--------------↑ ↑

                             ↓                |

            P5_0 ---------> P5_1 ---------> P5_2 -------->

               |-------------|--------------↑ ↑

                             ↓                |

            P4_0 ---------> P4_1 ---------> P4_2 -------->

               |-------------|--------------↑ ↑

                             |--------------↓ |

            P3_0 -------------------------> P3_2 -------->

        """

        # downsample channels using same-padding conv2d to target phase's if not the same
        # judge: same phase as target,
        # if same, pass;
        # elif earlier phase, downsample to target phase's by pooling
        # elif later phase, upsample to target phase's by nearest interpolation

        if self.attention:
            p3_out, p4_out, p5_out, p6_out, p7_out = self._forward_fast_attention(inputs)
        else:
            p3_out, p4_out, p5_out, p6_out, p7_out = self._forward(inputs)

        return p3_out, p4_out, p5_out, p6_out, p7_out

    def _forward_fast_attention(self, inputs):
        if self.first_time:
            p3, p4, p5 = inputs[-3:]

            p6_in = self.p5_to_p6(p5)
            p7_in = self.p6_to_p7(p6_in)

            p3_in = self.p3_down_channel(p3)
            p4_in = self.p4_down_channel(p4)
            p5_in = self.p5_down_channel(p5)

        else:
            # P3_0, P4_0, P5_0, P6_0 and P7_0
            p3_in, p4_in, p5_in, p6_in, p7_in = inputs

        # P7_0 to P7_2

        # Weights for P6_0 and P7_0 to P6_1
        p6_w1 = self.p6_w1_relu(self.p6_w1)
        weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon)
        # Connections for P6_0 and P7_0 to P6_1 respectively
        p6_up = self.conv6_up(self.swish(weight[0] * p6_in + weight[1] * self.p6_upsample(p7_in)))

        # Weights for P5_0 and P6_1 to P5_1
        p5_w1 = self.p5_w1_relu(self.p5_w1)
        weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon)
        # Connections for P5_0 and P6_1 to P5_1 respectively
        p5_up = self.conv5_up(self.swish(weight[0] * p5_in + weight[1] * self.p5_upsample(p6_up)))

        # Weights for P4_0 and P5_1 to P4_1
        p4_w1 = self.p4_w1_relu(self.p4_w1)
        weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon)
        # Connections for P4_0 and P5_1 to P4_1 respectively
        p4_up = self.conv4_up(self.swish(weight[0] * p4_in + weight[1] * self.p4_upsample(p5_up)))

        # Weights for P3_0 and P4_1 to P3_2
        p3_w1 = self.p3_w1_relu(self.p3_w1)
        weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon)
        # Connections for P3_0 and P4_1 to P3_2 respectively
        p3_out = self.conv3_up(self.swish(weight[0] * p3_in + weight[1] * self.p3_upsample(p4_up)))

        if self.first_time:
            p4_in = self.p4_down_channel_2(p4)
            p5_in = self.p5_down_channel_2(p5)

        # Weights for P4_0, P4_1 and P3_2 to P4_2
        p4_w2 = self.p4_w2_relu(self.p4_w2)
        weight = p4_w2 / (torch.sum(p4_w2, dim=0) + self.epsilon)
        # Connections for P4_0, P4_1 and P3_2 to P4_2 respectively
        p4_out = self.conv4_down(
            self.swish(weight[0] * p4_in + weight[1] * p4_up + weight[2] * self.p4_downsample(p3_out))
        )

        # Weights for P5_0, P5_1 and P4_2 to P5_2
        p5_w2 = self.p5_w2_relu(self.p5_w2)
        weight = p5_w2 / (torch.sum(p5_w2, dim=0) + self.epsilon)
        # Connections for P5_0, P5_1 and P4_2 to P5_2 respectively
        p5_out = self.conv5_down(
            self.swish(weight[0] * p5_in + weight[1] * p5_up + weight[2] * self.p5_downsample(p4_out))
        )

        # Weights for P6_0, P6_1 and P5_2 to P6_2
        p6_w2 = self.p6_w2_relu(self.p6_w2)
        weight = p6_w2 / (torch.sum(p6_w2, dim=0) + self.epsilon)
        # Connections for P6_0, P6_1 and P5_2 to P6_2 respectively
        p6_out = self.conv6_down(
            self.swish(weight[0] * p6_in + weight[1] * p6_up + weight[2] * self.p6_downsample(p5_out))
        )

        # Weights for P7_0 and P6_2 to P7_2
        p7_w2 = self.p7_w2_relu(self.p7_w2)
        weight = p7_w2 / (torch.sum(p7_w2, dim=0) + self.epsilon)
        # Connections for P7_0 and P6_2 to P7_2
        p7_out = self.conv7_down(self.swish(weight[0] * p7_in + weight[1] * self.p7_downsample(p6_out)))

        return p3_out, p4_out, p5_out, p6_out, p7_out

    def _forward(self, inputs):
        if self.first_time:
            p3, p4, p5 = inputs

            p6_in = self.p5_to_p6(p5)
            p7_in = self.p6_to_p7(p6_in)

            p3_in = self.p3_down_channel(p3)
            p4_in = self.p4_down_channel(p4)
            p5_in = self.p5_down_channel(p5)

        else:
            # P3_0, P4_0, P5_0, P6_0 and P7_0
            p3_in, p4_in, p5_in, p6_in, p7_in = inputs

        # P7_0 to P7_2

        # Connections for P6_0 and P7_0 to P6_1 respectively
        p6_up = self.conv6_up(self.swish(p6_in + self.p6_upsample(p7_in)))

        # Connections for P5_0 and P6_1 to P5_1 respectively
        p5_up = self.conv5_up(self.swish(p5_in + self.p5_upsample(p6_up)))

        # Connections for P4_0 and P5_1 to P4_1 respectively
        p4_up = self.conv4_up(self.swish(p4_in + self.p4_upsample(p5_up)))

        # Connections for P3_0 and P4_1 to P3_2 respectively
        p3_out = self.conv3_up(self.swish(p3_in + self.p3_upsample(p4_up)))

        if self.first_time:
            p4_in = self.p4_down_channel_2(p4)
            p5_in = self.p5_down_channel_2(p5)

        # Connections for P4_0, P4_1 and P3_2 to P4_2 respectively
        p4_out = self.conv4_down(self.swish(p4_in + p4_up + self.p4_downsample(p3_out)))

        # Connections for P5_0, P5_1 and P4_2 to P5_2 respectively
        p5_out = self.conv5_down(self.swish(p5_in + p5_up + self.p5_downsample(p4_out)))

        # Connections for P6_0, P6_1 and P5_2 to P6_2 respectively
        p6_out = self.conv6_down(self.swish(p6_in + p6_up + self.p6_downsample(p5_out)))

        # Connections for P7_0 and P6_2 to P7_2
        p7_out = self.conv7_down(self.swish(p7_in + self.p7_downsample(p6_out)))

        return p3_out, p4_out, p5_out, p6_out, p7_out