File size: 14,643 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import cv2
import random
import numpy as np
import math
import torch
import torchvision
from torchvision.transforms import functional as F

from maskrcnn_benchmark.structures.bounding_box import BoxList


def matrix_iou(a, b, relative=False):
    """

    return iou of a and b, numpy version for data augenmentation

    """
    lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
    rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])

    area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
    area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
    area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
    if relative:
        ious = area_i / (area_b[:, np.newaxis] + 1e-12)
    else:
        ious = area_i / (area_a[:, np.newaxis] + area_b - area_i + 1e-12)
    return ious


class RACompose(object):
    def __init__(self, pre_transforms, rand_transforms, post_transforms, concurrent=2):
        self.preprocess = pre_transforms
        self.transforms = post_transforms
        self.rand_transforms = rand_transforms
        self.concurrent = concurrent

    def __call__(self, image, target):
        for t in self.preprocess:
            image, target = t(image, target)
        for t in random.choices(self.rand_transforms, k=self.concurrent):
            image = np.array(image)
            image, target = t(image, target)
        for t in self.transforms:
            image, target = t(image, target)

        return image, target

    def __repr__(self):
        format_string = self.__class__.__name__ + "("
        for t in self.preprocess:
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\nRandom select {0} from: (".format(self.concurrent)
        for t in self.rand_transforms:
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += ")\nThen, apply:"
        for t in self.transforms:
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
        return format_string


class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target=None):
        for t in self.transforms:
            image, target = t(image, target)
        if target is None:
            return image
        return image, target

    def __repr__(self):
        format_string = self.__class__.__name__ + "("
        for t in self.transforms:
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
        return format_string


class Resize(object):
    def __init__(self, min_size, max_size, restrict=False):
        if not isinstance(min_size, (list, tuple)):
            min_size = (min_size,)
        self.min_size = min_size
        self.max_size = max_size
        self.restrict = restrict

    # modified from torchvision to add support for max size
    def get_size(self, image_size):
        w, h = image_size
        size = random.choice(self.min_size)
        max_size = self.max_size
        if self.restrict:
            return (size, max_size)
        if max_size is not None:
            min_original_size = float(min((w, h)))
            max_original_size = float(max((w, h)))
            if max_original_size / min_original_size * size > max_size:
                size = int(round(max_size * min_original_size / max_original_size))

        if (w <= h and w == size) or (h <= w and h == size):
            return (h, w)

        if w < h:
            ow = size
            oh = int(size * h / w)
        else:
            oh = size
            ow = int(size * w / h)

        return (oh, ow)

    def __call__(self, image, target):
        if isinstance(image, np.ndarray):
            image_size = self.get_size(image.shape[:2])
            image = cv2.resize(image, image_size)
            new_size = image_size
        else:
            image = F.resize(image, self.get_size(image.size))
            new_size = image.size
        if target is not None:
            target = target.resize(new_size)
        return image, target


class RandomHorizontalFlip(object):
    def __init__(self, prob=0.5):
        self.prob = prob

    def __call__(self, image, target):
        if random.random() < self.prob:
            if isinstance(image, np.ndarray):
                image = np.fliplr(image)
            else:
                image = F.hflip(image)
            if target is not None:
                target = target.transpose(0)
        return image, target


class RandomVerticalFlip(object):
    def __init__(self, prob=0.5):
        self.prob = prob

    def __call__(self, image, target):
        if random.random() < self.prob:
            if isinstance(image, np.ndarray):
                image = np.flipud(image)
            else:
                image = F.vflip(image)
            target = target.transpose(1)
        return image, target


class ToTensor(object):
    def __call__(self, image, target):
        return F.to_tensor(image), target


class Normalize(object):
    def __init__(self, mean, std, format="rgb"):
        self.mean = mean
        self.std = std
        self.format = format.lower()

    def __call__(self, image, target):
        if "bgr" in self.format:
            image = image[[2, 1, 0]]
        if "255" in self.format:
            image = image * 255
        image = F.normalize(image, mean=self.mean, std=self.std)
        return image, target


class ColorJitter(object):
    def __init__(

        self,

        brightness=0.0,

        contrast=0.0,

        saturation=0.0,

        hue=0.0,

    ):
        self.color_jitter = torchvision.transforms.ColorJitter(
            brightness=brightness,
            contrast=contrast,
            saturation=saturation,
            hue=hue,
        )

    def __call__(self, image, target):
        image = self.color_jitter(image)
        return image, target


class RandomCrop(object):
    def __init__(self, prob=0.5, min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3):
        # 1: return ori img
        self.prob = prob
        self.sample_mode = (1, *min_ious, 0)
        self.min_crop_size = min_crop_size

    def __call__(self, img, target):
        if random.random() > self.prob:
            return img, target

        h, w, c = img.shape
        boxes = target.bbox.numpy()
        labels = target.get_field("labels")

        while True:
            mode = random.choice(self.sample_mode)
            if mode == 1:
                return img, target

            min_iou = mode

            new_w = random.uniform(self.min_crop_size * w, w)
            new_h = random.uniform(self.min_crop_size * h, h)

            # h / w in [0.5, 2]
            if new_h / new_w < 0.5 or new_h / new_w > 2:
                continue

            left = random.uniform(0, w - new_w)
            top = random.uniform(0, h - new_h)

            patch = np.array([left, top, left + new_w, top + new_h])
            overlaps = matrix_iou(patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1)
            if overlaps.min() < min_iou:
                continue

            # center of boxes should inside the crop img
            center = (boxes[:, :2] + boxes[:, 2:]) / 2
            mask = (
                (center[:, 0] > patch[0])
                * (center[:, 1] > patch[1])
                * (center[:, 0] < patch[2])
                * (center[:, 1] < patch[3])
            )
            if not mask.any():
                continue

            boxes = boxes[mask]
            labels = labels[mask]

            # adjust boxes
            img = img[int(patch[1]) : int(patch[3]), int(patch[0]) : int(patch[2])]

            boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
            boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
            boxes -= np.tile(patch[:2], 2)

            new_target = BoxList(boxes, (img.shape[1], img.shape[0]), mode="xyxy")
            new_target.add_field("labels", labels)
            return img, new_target


class RandomAffine(object):
    def __init__(

        self,

        prob=0.5,

        degrees=(-10, 10),

        translate=(0.1, 0.1),

        scale=(0.9, 1.1),

        shear=(-2, 2),

        borderValue=(127.5, 127.5, 127.5),

    ):
        self.prob = prob
        self.degrees = degrees
        self.translate = translate
        self.scale = scale
        self.shear = shear
        self.borderValue = borderValue

    def __call__(self, img, targets=None):
        if random.random() > self.prob:
            return img, targets
        # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
        # https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4

        border = 0  # width of added border (optional)
        # height = max(img.shape[0], img.shape[1]) + border * 2
        height, width, _ = img.shape
        bbox = targets.bbox

        # Rotation and Scale
        R = np.eye(3)
        a = random.random() * (self.degrees[1] - self.degrees[0]) + self.degrees[0]
        # a += random.choice([-180, -90, 0, 90])  # 90deg rotations added to small rotations
        s = random.random() * (self.scale[1] - self.scale[0]) + self.scale[0]
        R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)

        # Translation
        T = np.eye(3)
        T[0, 2] = (random.random() * 2 - 1) * self.translate[0] * img.shape[0] + border  # x translation (pixels)
        T[1, 2] = (random.random() * 2 - 1) * self.translate[1] * img.shape[1] + border  # y translation (pixels)

        # Shear
        S = np.eye(3)
        S[0, 1] = math.tan(
            (random.random() * (self.shear[1] - self.shear[0]) + self.shear[0]) * math.pi / 180
        )  # x shear (deg)
        S[1, 0] = math.tan(
            (random.random() * (self.shear[1] - self.shear[0]) + self.shear[0]) * math.pi / 180
        )  # y shear (deg)

        M = S @ T @ R  # Combined rotation matrix. ORDER IS IMPORTANT HERE!!
        imw = cv2.warpPerspective(
            img, M, dsize=(width, height), flags=cv2.INTER_LINEAR, borderValue=self.borderValue
        )  # BGR order borderValue

        # Return warped points also
        if targets:
            n = bbox.shape[0]
            points = bbox[:, 0:4]
            area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1])

            # warp points
            xy = np.ones((n * 4, 3))
            xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
            xy = (xy @ M.T)[:, :2].reshape(n, 8)

            # create new boxes
            x = xy[:, [0, 2, 4, 6]]
            y = xy[:, [1, 3, 5, 7]]
            xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T

            # apply angle-based reduction
            radians = a * math.pi / 180
            reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
            x = (xy[:, 2] + xy[:, 0]) / 2
            y = (xy[:, 3] + xy[:, 1]) / 2
            w = (xy[:, 2] - xy[:, 0]) * reduction
            h = (xy[:, 3] - xy[:, 1]) * reduction
            xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T

            # reject warped points outside of image
            x1 = np.clip(xy[:, 0], 0, width)
            y1 = np.clip(xy[:, 1], 0, height)
            x2 = np.clip(xy[:, 2], 0, width)
            y2 = np.clip(xy[:, 3], 0, height)
            new_bbox = np.concatenate((x1, y1, x2, y2)).reshape(4, n).T
            targets.bbox = torch.as_tensor(new_bbox, dtype=torch.float32)

        return imw, targets


class RandomErasing:
    def __init__(

        self,

        prob=0.5,

        era_l=0.02,

        era_h=1 / 3,

        min_aspect=0.3,

        mode="const",

        max_count=1,

        max_overlap=0.3,

        max_value=255,

    ):
        self.prob = prob
        self.era_l = era_l
        self.era_h = era_h
        self.min_aspect = min_aspect
        self.min_count = 1
        self.max_count = max_count
        self.max_overlap = max_overlap
        self.max_value = max_value
        self.mode = mode.lower()
        assert self.mode in ["const", "rand", "pixel"], "invalid erase mode: %s" % self.mode

    def _get_pixels(self, patch_size):
        if self.mode == "pixel":
            return np.random.random(patch_size) * self.max_value
        elif self.mode == "rand":
            return np.random.random((1, 1, patch_size[-1])) * self.max_value
        else:
            return np.zeros((1, 1, patch_size[-1]))

    def __call__(self, image, target):
        if random.random() > self.prob:
            return image, target
        ih, iw, ic = image.shape
        ia = ih * iw
        count = self.min_count if self.min_count == self.max_count else random.randint(self.min_count, self.max_count)
        erase_boxes = []
        for _ in range(count):
            for try_idx in range(10):
                erase_area = random.uniform(self.era_l, self.era_h) * ia / count
                aspect_ratio = math.exp(random.uniform(math.log(self.min_aspect), math.log(1 / self.min_aspect)))
                eh = int(round(math.sqrt(erase_area * aspect_ratio)))
                ew = int(round(math.sqrt(erase_area / aspect_ratio)))
                if eh < ih and ew < iw:
                    x = random.randint(0, iw - ew)
                    y = random.randint(0, ih - eh)
                    image[y : y + eh, x : x + ew, :] = self._get_pixels((eh, ew, ic))
                    erase_boxes.append([x, y, x + ew, y + eh])
                break

        if target is not None and len(erase_boxes) > 0:
            boxes = target.bbox.numpy()
            labels = target.get_field("labels")
            overlap = matrix_iou(np.array(erase_boxes), boxes, relative=True)
            mask = overlap.max(axis=0) < self.max_overlap
            boxes = boxes[mask]
            labels = labels[mask]
            target.bbox = torch.as_tensor(boxes, dtype=torch.float32)
            target.add_field("labels", labels)

        return image, target