Spaces:
Sleeping
Sleeping
File size: 11,652 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Set up custom environment before nearly anything else is imported
# NOTE: this should be the first import (no not reorder)
from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip
import argparse
import os
import torch
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.data import make_data_loader
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.utils.collect_env import collect_env_info
from maskrcnn_benchmark.utils.comm import synchronize, get_rank, is_main_process
from maskrcnn_benchmark.utils.logger import setup_logger
from maskrcnn_benchmark.utils.miscellaneous import mkdir
from maskrcnn_benchmark.utils.stats import get_model_complexity_info
import os
import functools
import io
import os
import datetime
import wandb
import torch
import torch.distributed as dist
import pdb
from pprint import pprint
def init_distributed_mode(args):
"""Initialize distributed training, if appropriate"""
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
else:
print("Not using distributed mode")
args.distributed = False
return
# args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = "nccl"
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
dist.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
timeout=datetime.timedelta(0, 72000),
)
dist.barrier()
setup_for_distributed(args.rank == 0)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def main():
parser = argparse.ArgumentParser(description="PyTorch Detection to Grounding Inference")
parser.add_argument(
"--config-file",
default="configs/grounding/e2e_dyhead_SwinT_S_FPN_1x_od_grounding_eval.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument(
"--weight",
default=None,
metavar="FILE",
help="path to config file",
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER
)
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", help="url used to set up distributed training")
parser.add_argument("--task_config", default=None)
parser.add_argument("--eval_negative", action="store_true")
parser.add_argument("--wandb_project_name", default="haroldli/language_det_eval")
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
distributed = num_gpus > 1
if distributed:
# torch.cuda.set_device(args.local_rank)
# torch.distributed.init_process_group(
# backend="nccl", init_method="env://"
# )
init_distributed_mode(args)
print("Passed distributed init")
cfg.local_rank = args.local_rank
cfg.num_gpus = num_gpus
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
log_dir = cfg.OUTPUT_DIR
if args.weight:
log_dir = os.path.join(log_dir, "eval", os.path.splitext(os.path.basename(args.weight))[0])
if log_dir:
mkdir(log_dir)
logger = setup_logger("maskrcnn_benchmark", log_dir, get_rank())
logger.info(args)
logger.info("Using {} GPUs".format(num_gpus))
logger.info(cfg)
# logger.info("Collecting env info (might take some time)")
# logger.info("\n" + collect_env_info())
model = build_detection_model(cfg)
model.to(cfg.MODEL.DEVICE)
# we currently disable this
# params, flops = get_model_complexity_info(model,
# (3, cfg.INPUT.MAX_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST),
# input_constructor=lambda x: {'images': [torch.rand(x).cuda()]})
# print("FLOPs: {}, #Parameter: {}".format(params, flops))
checkpointer = DetectronCheckpointer(cfg, model, save_dir=cfg.OUTPUT_DIR)
if args.weight:
_ = checkpointer.load(args.weight, force=True)
else:
_ = checkpointer.load(cfg.MODEL.WEIGHT)
if args.weight:
weight_iter = os.path.splitext(os.path.basename(args.weight))[0].split("_")[-1]
try:
weight_iter = int(weight_iter)
except:
weight_iter = 1
else:
weight_iter = 1
# get the wandb name
train_wandb_name = os.path.basename(cfg.OUTPUT_DIR)
eval_wandb_name = train_wandb_name + "_eval" + "_Fixed{}_Chunk{}".format(not cfg.DATASETS.LVIS_USE_NORMAL_AP, cfg.TEST.CHUNKED_EVALUATION)
if args.eval_negative:
from maskrcnn_benchmark.engine.inference_contrastive import inference
inference_function = inference
else:
from maskrcnn_benchmark.engine.inference import inference
inference_function = inference
if is_main_process() and train_wandb_name != "__test__":
api = wandb.Api()
runs = api.runs(args.wandb_project_name)
matched_run = None
history = []
exclude_keys = ['_runtime', '_timestamp']
for run in runs:
if run.name == eval_wandb_name and str(run._state) == "finished":
print("run found", run.name)
print(run.summary)
matched_run = run
run_his = matched_run.scan_history()
#print([len(i) for i in run_his])
for stat in run_his:
stat_i = {k: v for k, v in stat.items() if k not in exclude_keys and v is not None}
if len(stat_i) > 1:
history.append(stat_i)
#matched_run.delete()
break
wandb_run = wandb.init(
project = 'language_det_eval',
job_type = 'evaluate',
name = eval_wandb_name,
)
#pprint(history)
# exclude_keys = ['_step', '_runtime', '_timestamp']
# for stat in history:
# wandb.log(
# {k: v for k, v in stat.items() if k not in exclude_keys},
# step = stat['_step'],
# )
else:
wandb_run = None
history = None
print("weight_iter: ", weight_iter)
print("train_wandb_name: ", train_wandb_name)
print("eval_wandb_name: ", eval_wandb_name)
if args.task_config:
all_task_configs = args.task_config.split(",")
for task_config in all_task_configs:
cfg_ = cfg.clone()
cfg_.defrost()
cfg_.merge_from_file(task_config)
cfg_.merge_from_list(args.opts)
iou_types = ("bbox",)
if cfg_.MODEL.MASK_ON:
iou_types = iou_types + ("segm",)
if cfg_.MODEL.KEYPOINT_ON:
iou_types = iou_types + ("keypoints",)
dataset_names = cfg_.DATASETS.TEST
if isinstance(dataset_names[0], (list, tuple)):
dataset_names = [dataset for group in dataset_names for dataset in group]
output_folders = [None] * len(dataset_names)
if log_dir:
for idx, dataset_name in enumerate(dataset_names):
output_folder = os.path.join(log_dir, "inference", dataset_name)
mkdir(output_folder)
output_folders[idx] = output_folder
data_loaders_val = make_data_loader(cfg_, is_train=False, is_distributed=distributed)
for output_folder, dataset_name, data_loader_val in zip(
output_folders, dataset_names, data_loaders_val
):
inference_function(
model,
data_loader_val,
dataset_name=dataset_name,
iou_types=iou_types,
box_only=cfg_.MODEL.RPN_ONLY
and (cfg_.MODEL.RPN_ARCHITECTURE == "RPN" or cfg_.DATASETS.CLASS_AGNOSTIC),
device=cfg_.MODEL.DEVICE,
expected_results=cfg_.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg_.TEST.EXPECTED_RESULTS_SIGMA_TOL,
output_folder=output_folder,
cfg=cfg_,
wandb_run=wandb_run,
weight_iter=weight_iter,
history=history,
)
synchronize()
# logger.info("FLOPs: {}, #Parameter: {}".format(params, flops))
else:
iou_types = ("bbox",)
if cfg.MODEL.MASK_ON:
iou_types = iou_types + ("segm",)
if cfg.MODEL.KEYPOINT_ON:
iou_types = iou_types + ("keypoints",)
dataset_names = cfg.DATASETS.TEST
if isinstance(dataset_names[0], (list, tuple)):
dataset_names = [dataset for group in dataset_names for dataset in group]
output_folders = [None] * len(dataset_names)
if log_dir:
for idx, dataset_name in enumerate(dataset_names):
output_folder = os.path.join(log_dir, "inference", dataset_name)
mkdir(output_folder)
output_folders[idx] = output_folder
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val):
inference_function(
model,
data_loader_val,
dataset_name=dataset_name,
iou_types=iou_types,
box_only=cfg.MODEL.RPN_ONLY
and (cfg.MODEL.RPN_ARCHITECTURE == "RPN" or cfg.DATASETS.CLASS_AGNOSTIC),
device=cfg.MODEL.DEVICE,
expected_results=cfg.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
output_folder=output_folder,
cfg=cfg,
wandb_run=wandb_run,
weight_iter=weight_iter,
history=history
)
synchronize()
# logger.info("FLOPs: {}, #Parameter: {}".format(params, flops))
if __name__ == "__main__":
main()
|