Spaces:
Sleeping
Sleeping
File size: 37,096 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import datetime
import logging
import time
import os
import re
import torch
from tqdm import tqdm
from collections import defaultdict
import torch.distributed as dist
from maskrcnn_benchmark.data.datasets.evaluation import evaluate, im_detect_bbox_aug
from ..utils.comm import is_main_process
from ..utils.comm import all_gather
from ..utils.comm import synchronize
from .tsv_saver import TSVResultWriter
import pdb
from maskrcnn_benchmark.data.datasets.evaluation.flickr.flickr_eval import FlickrEvaluator
from maskrcnn_benchmark.data.datasets.refexp import RefExpEvaluator
from maskrcnn_benchmark.structures.bounding_box import BoxList
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
from maskrcnn_benchmark.data.datasets.tsv import load_from_yaml_file
from sentence_transformers import SentenceTransformer
from numpy.random import RandomState
import fastcluster
import collections
import scipy
import numpy as np
import scipy.cluster
import sklearn
import base64
import cv2, json
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.data.datasets.od_to_grounding import clean_name
from maskrcnn_benchmark.data.datasets._od_to_description import DescriptionConverter
from copy import deepcopy
from pprint import pprint
import wandb
def imshow(img, file_name = "tmp.jpg"):
plt.imshow(img[:, :, [2, 1, 0]])
plt.axis("off")
#plt.figtext(0.5, 0.09, "test", wrap=True, horizontalalignment='center', fontsize=20)
plt.savefig(file_name)
def load(url_or_file_name):
try:
response = requests.get(url_or_file_name)
except:
response = None
if response is None:
pil_image = Image.open(url_or_file_name).convert("RGB")
else:
pil_image = Image.open(BytesIO(response.content)).convert("RGB")
# convert to BGR format
image = np.array(pil_image)[:, :, [2, 1, 0]]
return image
def inference_default(
model,
data_loader,
dataset_name,
iou_types=("bbox",),
box_only=False,
device="cuda",
expected_results=(),
expected_results_sigma_tol=4,
output_folder=None,
cfg=None,
):
# convert to a torch.device for efficiency
device = torch.device(device)
num_devices = torch.distributed.get_world_size() if torch.distributed.is_initialized() else 1
logger = logging.getLogger("maskrcnn_benchmark.inference")
dataset = data_loader.dataset
logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset)))
start_time = time.time()
model.eval()
results_dict = {}
cpu_device = torch.device("cpu")
for i, batch in enumerate(tqdm(data_loader)):
images, targets, image_ids, *_ = batch
with torch.no_grad():
if cfg.TEST.USE_MULTISCALE:
output = im_detect_bbox_aug(model, images, device)
else:
output = model(images.to(device))
output = [o.to(cpu_device) for o in output]
results_dict.update({img_id: result for img_id, result in zip(image_ids, output)})
predictions = results_dict
# wait for all processes to complete before measuring the time
synchronize()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=total_time))
logger.info(
"Total inference time: {} ({} s / img per device, on {} devices)".format(
total_time_str, total_time * num_devices / len(dataset), num_devices
)
)
predictions = _accumulate_predictions_from_multiple_gpus(predictions)
if not is_main_process():
return None
if output_folder:
torch.save(predictions, os.path.join(output_folder, "predictions.pth"))
extra_args = dict(
box_only=box_only,
iou_types=iou_types,
expected_results=expected_results,
expected_results_sigma_tol=expected_results_sigma_tol,
)
return evaluate(dataset=dataset, predictions=predictions, output_folder=output_folder, **extra_args)
def clean_name(name):
name = re.sub(r"\(.*\)", "", name)
name = re.sub(r"_", " ", name)
name = re.sub(r" ", " ", name)
return name
def create_one_hot_dict(labels, no_minus_one_for_one_hot=False):
positive_map_token_to_label = defaultdict(int)
positive_map_label_to_token = defaultdict(int)
for i in range(len(labels)):
positive_map_token_to_label[i] = labels[i]
positive_map_label_to_token[labels[i]] = i
if no_minus_one_for_one_hot:
positive_map_token_to_label = defaultdict(int)
positive_map_label_to_token = defaultdict(int)
for i in range(len(labels)):
positive_map_token_to_label[i + 1] = labels[i]
positive_map_label_to_token[labels[i]] = i + 1
return positive_map_token_to_label, positive_map_label_to_token
def create_positive_dict(tokenized, tokens_positive, labels):
"""construct a dictionary such that positive_map[i] = j, iff token i is mapped to j label"""
positive_map = defaultdict(int)
# Additionally, have positive_map_label_to_tokens
positive_map_label_to_token = defaultdict(list)
for j, tok_list in enumerate(tokens_positive):
for (beg, end) in tok_list:
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
for i in range(beg_pos, end_pos + 1):
positive_map[i] = labels[j] # because the labels starts from 1
positive_map_label_to_token[labels[j]].append(i)
# positive_map[j, beg_pos : end_pos + 1].fill_(1)
return positive_map, positive_map_label_to_token # / (positive_map.sum(-1)[:, None] + 1e-6)
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
all_ = []
for i in range(0, len(lst), n):
data_index = lst[i : i + n]
all_.append(data_index)
counter = 0
for i in all_:
counter += len(i)
assert counter == len(lst)
return all_
sbert_model = None
def _get_sbert_model():
global sbert_model
if not sbert_model:
sbert_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
return sbert_model
def semantic_deduplicate_captions(captions,
label_list,
keep_p=.8,
must_keep_idxs=None,
seed=1, verbose=False,
return_features=False,
force_exact=False):
'''
keep_p can be a proportion to keep, e.g., .5, or it can be an int representing the number to keep, like 10.
'''
original_captions = deepcopy(captions)
captions = ["This is " + c for c in captions]
prng = RandomState(seed)
must_keep_idxs = set(must_keep_idxs) if must_keep_idxs is not None else set()
sbert =_get_sbert_model()
features = sbert.encode([c for c in captions], show_progress_bar=verbose)
pdists = sklearn.metrics.pairwise_distances(features, metric='cosine')
# numerical issues...
np.fill_diagonal(pdists, 0.0)
pdists = (pdists + pdists.transpose()) / 2
pdists = scipy.spatial.distance.squareform(pdists)
res = fastcluster.linkage(pdists, method='average', preserve_input=False)
del pdists
if keep_p < 1:
n_keep_from_cluster = int(np.round(keep_p*(len(captions))))
else:
n_keep_from_cluster = min(keep_p, len(captions))
print('going to keep {} out of {} captions'.format(n_keep_from_cluster, len(captions)))
clusters = scipy.cluster.hierarchy.fcluster(res, n_keep_from_cluster, criterion='maxclust')
cluster2idxs = collections.defaultdict(list)
for idx, cluster in enumerate(clusters):
cluster2idxs[cluster].append(idx)
# algo:
# 1. go through clusters with must includes, add must keeps.
# 2. for each cluster without a must keep, add it to candidate list, shuffle candidate list
# 3. loop over each candidate in the candidate list until the return set is the correct size.
chunked_labels = []
chunked_label_list = []
for c, idxs in cluster2idxs.items():
chunked_labels.append([original_captions[i] for i in idxs])
chunked_label_list.append([label_list[i] for i in idxs])
print("size of each prompt:", [len(i) for i in chunked_labels])
return chunked_labels, chunked_label_list
def create_queries_and_maps_from_dataset(dataset, cfg):
categories = dataset.categories()
# one_hot = dataset.one_hot
labels = []
label_list = []
keys = list(categories.keys())
keys.sort()
for i in keys:
labels.append(i)
label_list.append(categories[i])
if cfg.TEST.CHUNKED_EVALUATION != -1:
if cfg.TEST.CHUNK_METHOD == "similar":
label_list, labels = semantic_deduplicate_captions(
label_list, labels, keep_p=len(labels) // cfg.TEST.CHUNKED_EVALUATION,)
else:
labels = chunks(labels, cfg.TEST.CHUNKED_EVALUATION)
label_list = chunks(label_list, cfg.TEST.CHUNKED_EVALUATION)
else:
labels = [labels]
label_list = [label_list]
all_queries = []
all_positive_map_label_to_token = []
for i in range(len(labels)):
labels_i = labels[i]
label_list_i = label_list[i]
query_i, positive_map_label_to_token_i = create_queries_and_maps(
labels_i,
label_list_i,
additional_labels=cfg.DATASETS.SUPRESS_QUERY if cfg.DATASETS.USE_SUPRESS_QUERY else None,
cfg=cfg,
)
all_queries.append(query_i)
all_positive_map_label_to_token.append(positive_map_label_to_token_i)
print("All queries", all_queries)
return all_queries, all_positive_map_label_to_token
def create_queries_and_maps(labels, label_list, additional_labels=None, cfg=None):
# Clean label list
label_list = [clean_name(i) for i in label_list]
# Form the query and get the mapping
tokens_positive = []
start_i = 0
end_i = 0
objects_query = ""
# sep between tokens, follow training
separation_tokens = cfg.DATASETS.SEPARATION_TOKENS
caption_prompt = cfg.DATASETS.CAPTION_PROMPT
if caption_prompt is not None and isinstance(caption_prompt, str):
caption_prompt = load_from_yaml_file(caption_prompt)
use_caption_prompt = cfg.DATASETS.USE_CAPTION_PROMPT and caption_prompt is not None
for _index, label in enumerate(label_list):
if use_caption_prompt:
objects_query += caption_prompt[_index]["prefix"]
start_i = len(objects_query)
if use_caption_prompt:
objects_query += caption_prompt[_index]["name"]
else:
objects_query += label
end_i = len(objects_query)
tokens_positive.append([(start_i, end_i)]) # Every label has a [(start, end)]
if use_caption_prompt:
objects_query += caption_prompt[_index]["suffix"]
if _index != len(label_list) - 1:
objects_query += separation_tokens
if additional_labels is not None:
objects_query += separation_tokens
for _index, label in enumerate(additional_labels):
objects_query += label
if _index != len(additional_labels) - 1:
objects_query += separation_tokens
print(objects_query)
from transformers import AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tokenized = tokenizer(objects_query, return_tensors="pt")
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
tokenized = tokenizer(objects_query, return_tensors="pt")
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
from transformers import CLIPTokenizerFast
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
tokenizer = CLIPTokenizerFast.from_pretrained(
"openai/clip-vit-base-patch32", from_slow=True, mask_token="ðŁĴij</w>"
)
else:
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", from_slow=True)
tokenized = tokenizer(
objects_query, max_length=cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN, truncation=True, return_tensors="pt"
)
else:
tokenizer = None
raise NotImplementedError
# Create the mapping between tokenized sentence and the original label
# if one_hot:
# positive_map_token_to_label, positive_map_label_to_token = create_one_hot_dict(labels, no_minus_one_for_one_hot=cfg.DATASETS.NO_MINUS_ONE_FOR_ONE_HOT)
# else:
positive_map_token_to_label, positive_map_label_to_token = create_positive_dict(
tokenized, tokens_positive, labels=labels
) # from token position to original label
return objects_query, positive_map_label_to_token
def create_positive_map_label_to_token_from_positive_map(positive_map, plus=0):
positive_map_label_to_token = {}
for i in range(len(positive_map)):
positive_map_label_to_token[i + plus] = torch.nonzero(positive_map[i], as_tuple=True)[0].tolist()
return positive_map_label_to_token
def _accumulate_predictions_from_multiple_gpus(predictions_per_gpu):
all_predictions = all_gather(predictions_per_gpu)
if not is_main_process():
return
# merge the list of dicts
predictions = {}
for p in all_predictions:
predictions.update(p)
# convert a dict where the key is the index in a list
image_ids = list(sorted(predictions.keys()))
if len(image_ids) != image_ids[-1] + 1:
logger = logging.getLogger("maskrcnn_benchmark.inference")
logger.warning(
"Number of images that were gathered from multiple processes is not "
"a contiguous set. Some images might be missing from the evaluation"
)
# convert to a list
predictions = [predictions[i] for i in image_ids]
return predictions
def resize_box(output, targets):
if isinstance(targets[0], dict):
orig_target_sizes = targets[0]["orig_size"].unsqueeze(0)
else:
orig_target_sizes = torch.stack([targets[0].extra_fields["orig_size"] for _ in range(1)], dim=0)
img_h, img_w = orig_target_sizes.unbind(1)
return output.resize((img_w, img_h))
def flickr_post_process(output, targets, positive_map_label_to_token, plus):
raw_boxes = deepcopy(output.bbox)
output = resize_box(output, targets)
scores, indices = torch.topk(output.extra_fields["scores"], k=len(output.extra_fields["scores"]), sorted=True)
boxes = output.bbox.tolist()
boxes = [boxes[i] for i in indices]
labels = [output.extra_fields["labels"][i] for i in indices]
output_boxes = [[] for i in range(len(positive_map_label_to_token))]
output_scores = [[] for i in range(len(positive_map_label_to_token))]
for i in range(len(boxes)):
output_boxes[labels[i] - plus].append(boxes[i])
output_scores[labels[i] - plus].append(scores[i])
for i in output_boxes:
i.append([0.0, 0.0, 0.0, 0.0])
image_ids = [t.extra_fields["original_img_id"] for t in targets]
sentence_ids = [t.extra_fields["sentence_id"] for t in targets]
return {"image_id": image_ids[0], "sentence_id": sentence_ids[0], "boxes": output_boxes, "scores": output_scores, "raw_boxes": raw_boxes}
def post_process(dataset_name, output, targets, positive_map_label_to_token, plus, categories = None, captions = None):
'''
Transfer the output from the model to appropriate formats for evaluation
'''
if "flickr" in dataset_name:
output = output[0]
raw_boxes = deepcopy(output.bbox)
new_output = flickr_post_process(
output, targets, positive_map_label_to_token, plus # This is only used in Flickr
)
visualization_output = (
new_output["image_id"],
{
"boxes": new_output["boxes"],
"scores": new_output["scores"],
"raw_boxes": raw_boxes,
}
)
elif "lvis" in dataset_name:
output = output[0]
raw_boxes = deepcopy(output.bbox)
output = resize_box(output, targets)
scores = output.extra_fields["scores"]
labels = output.extra_fields["labels"]
boxes = output.bbox
new_output = (targets[0]["image_id"].item(), {"scores": scores, "labels": labels, "boxes": boxes, "raw_boxes": raw_boxes, "labels_text": [categories[cat_id.item()] for cat_id in labels]})
visualization_output = new_output[1]
elif "refcoco" in dataset_name:
output = output[0]
output = resize_box(output, targets)
scores = output.extra_fields["scores"]
boxes = output.bbox
image_id = [t.extra_fields["image_id"] for t in targets][0].item()
new_output = {image_id: {"scores": scores, "boxes": boxes}}
visualization_output = {"scores": scores, "boxes": boxes}
else:
new_output = output
visualization_output = output
return new_output, visualization_output
def process_for_vis(dataset_name, image_ids, visualization_outputs):
'''
Transfer the output from the model to appropriate formats for visualization
'''
if "lvis" in dataset_name:
assert(len(image_ids) == 1)
# merge the visualization_outputs
visualization_output = {}
if len(visualization_outputs) > 0:
for key in visualization_outputs[0].keys():
if key == "labels_text":
_labels_text = [v[key] for v in visualization_outputs]
visualization_output[key] = [item for sublist in _labels_text for item in sublist]
else:
visualization_output[key] = torch.cat([v[key] for v in visualization_outputs], dim=0)
visualization_output = [(image_ids[0], visualization_output)] #
return visualization_output
def write_to_wandb_log(score, dataset_name, weight_iter, history):
all_results = defaultdict(dict)
exclude_keys = ['_step', '_runtime', '_timestamp']
if history is not None:
for stat in history:
all_results[stat['_step']].update({k: v for k, v in stat.items() if k not in exclude_keys})
if "lvis" in dataset_name.lower():
mAP_all = float(score[0].split("Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= -1 catIds=all] = ")[-1])
mAP_rare = float(score[6].split("Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= -1 catIds= r] = ")[-1])
mAP_common = float(score[7].split("Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= -1 catIds= c] = ")[-1])
mAP_frequent = float(score[8].split("Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= -1 catIds= f] = ")[-1])
#wandb.log({f"{dataset_name}_mAP_all": mAP_all, f"{dataset_name}_mAP_rare": mAP_rare, f"{dataset_name}_mAP_common": mAP_common, f"{dataset_name}_mAP_frequent": mAP_frequent}, step = weight_iter)
all_results[weight_iter].update({f"{dataset_name}_mAP_all": mAP_all, f"{dataset_name}_mAP_rare": mAP_rare, f"{dataset_name}_mAP_common": mAP_common, f"{dataset_name}_mAP_frequent": mAP_frequent})
elif "flickr" in dataset_name.lower():
recall_1 = score["Recall@1_all"]
recall_5 = score["Recall@5_all"]
recall_10 = score["Recall@10_all"]
# wandb.log(
# {f"{dataset_name}_recall@1": recall_1, f"{dataset_name}_recall@5": recall_5, f"{dataset_name}_recall@10": recall_10}, step = weight_iter
# )
all_results[weight_iter].update({f"{dataset_name}_recall@1": recall_1, f"{dataset_name}_recall@5": recall_5, f"{dataset_name}_recall@10": recall_10})
elif "coco" in dataset_name.lower():
all_results[weight_iter].update({f"{dataset_name}_mAP": score[0].results['bbox']['AP']})
# sort all results
max_key = max(all_results.keys())
for i in range(max_key + 1):
if i in all_results:
wandb.log(all_results[i], step = i)
else:
wandb.log({}, step = i)
# for k in sorted(all_results.keys()):
# # need to do consecutive logging
# wandb.log(all_results[k], step = k)
def build_flickr_evaluator(cfg):
evaluator = FlickrEvaluator(
"DATASET/flickr30k/flickr30k/", # Hard written!!
subset="test" if "test" in cfg.DATASETS.TEST[0] else "val",
merge_boxes=cfg.DATASETS.FLICKR_GT_TYPE == "merged",
)
return evaluator
def build_refexp_evaluator(dataset):
from maskrcnn_benchmark.data.datasets.refexp import RefExpDataset
evaluator = RefExpEvaluator(dataset.coco, ("bbox"))
return evaluator
def build_lvis_evaluator(ann_file, topk, fixed_ap=True):
from maskrcnn_benchmark.data.datasets.evaluation.lvis.lvis import LVIS
from maskrcnn_benchmark.data.datasets.evaluation.lvis.lvis_eval import LvisEvaluatorFixedAP, LvisEvaluator
evaluator = LvisEvaluatorFixedAP(LVIS(ann_file), topk = topk, fixed_ap=fixed_ap) # topk
#evaluator = LvisEvaluator(LVIS(ann_file), iou_types=['segm', 'bbox'])
return evaluator
def write_lvis_results(results, output_file_name):
if isinstance(results, dict):
output_file_name = output_file_name.replace("bbox.csv", "coco_results.pth")
torch.save(results, output_file_name)
return
lines = []
lines.append("metric, avg ")
for each_result in results:
metric_string = " ".join(each_result.split(" ")[:-2])
number = each_result.split(" ")[-1]
each_result = metric_string + ", " + number + " "
lines.append(each_result)
string_to_write = "\n".join(lines) + "\n"
with open(output_file_name, "w") as f:
f.write(string_to_write)
return
def write_flickr_results(results, output_file_name):
lines = []
lines.append("metric, avg ")
for each_metric, number in results.items():
each_result = each_metric + ", " + str(number) + " "
lines.append(each_result)
string_to_write = "\n".join(lines) + "\n"
with open(output_file_name, "w") as f:
f.write(string_to_write)
return
def write_refexp_results(results, output_file_name):
lines = []
lines.append("metric, avg ")
for each_metric, recall_list in results.items():
for i, recall in zip(
[1, 5, 10],
recall_list,
):
each_result = each_metric + ": " + f"Recall@{i} = " + str(recall) + " "
lines.append(each_result)
string_to_write = "\n".join(lines) + "\n"
with open(output_file_name, "w") as f:
f.write(string_to_write)
return
def inference(
model,
data_loader,
dataset_name,
iou_types=("bbox",),
box_only=False,
device="cuda",
expected_results=(),
expected_results_sigma_tol=4,
output_folder=None,
cfg=None,
verbose=True,
weight_iter = None,
wandb_run=None,
history=None
):
# convert to a torch.device for efficiency
try:
device = torch.device(device)
except:
device = device
num_devices = torch.distributed.get_world_size() if torch.distributed.is_initialized() else 1
logger = logging.getLogger("maskrcnn_benchmark.inference")
dataset = data_loader.dataset
if verbose:
logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset)))
start_time = time.time()
task = cfg.TEST.EVAL_TASK
if not task:
return inference_default(
model,
data_loader,
dataset_name,
iou_types,
box_only,
device,
expected_results,
expected_results_sigma_tol,
output_folder,
cfg,
)
if task == "detection":
if "description" in cfg.DATASETS.OD_TO_GROUNDING_VERSION:
try:
descriptions = dataset.lvis.dataset["categories"]
except:
descriptions = dataset.coco.dataset["categories"]
od_grounding_converter = DescriptionConverter(
cfg.DATASETS.DESCRIPTION_FILE,
cfg.DATASETS.OD_TO_GROUNDING_VERSION,
descriptions,
dataset.categories()) # the last parameters is a bit ad-hoc
all_queries, all_positive_map_label_to_token = od_grounding_converter.inference_od_to_grounding(dataset, cfg)
else:
all_queries, all_positive_map_label_to_token = create_queries_and_maps_from_dataset(dataset, cfg)
elif task == "grounding":
all_queries = [None]
all_positive_map_label_to_token = [None]
else:
assert 0
"""
Build Dataset Sepecific Evaluator
"""
if "flickr" in cfg.DATASETS.TEST[0]:
evaluator = build_flickr_evaluator(cfg)
elif "lvis" in cfg.DATASETS.TEST[0]:
evaluator = build_lvis_evaluator(dataset.ann_file, topk=cfg.DATASETS.LVIS_TOPK, fixed_ap=not cfg.DATASETS.LVIS_USE_NORMAL_AP)
elif "refcoco" in cfg.DATASETS.TEST[0]:
evaluator = build_refexp_evaluator(dataset)
else:
evaluator = None
model.eval()
results_dict = {}
cpu_device = torch.device("cpu")
if verbose:
_iterator = tqdm(data_loader)
else:
_iterator = data_loader
# save the visualization results
max_visualize_num = 1000
gold_data_tsv = TSVResultWriter(
max_visualize_num=max_visualize_num,
file_name=os.path.join(output_folder, "gold_{}/test.tsv").format(torch.distributed.get_rank() if torch.distributed.is_initialized() else 0,
write_freq=10)
)
prediction_data_tsv = TSVResultWriter(
max_visualize_num=max_visualize_num,
file_name=os.path.join(output_folder, "prediction_{}/test.tsv").format(torch.distributed.get_rank() if torch.distributed.is_initialized() else 0),
write_freq=10)
try:
categories = dataset.categories()
raw_categories = dataset.lvis.dataset["categories"]
raw_categories = {c["id"]: c for c in raw_categories}
except:
categories = None
raw_categories = None
for i, batch in enumerate(_iterator):
if i == cfg.TEST.SUBSET:
break
images, targets, image_ids, *_ = batch
gold_data_tsv.update_gold_od_data(images, targets, raw_categories)
all_output = []
mdetr_style_output = []
visualization_outputs = []
all_labels = set()
assert len(targets) == 1
for l in targets[0]['labels']: #assert len(targets) == 1
all_labels.add(int(l))
negative_index = 4 #0:pos, 1-5: neg
for cur_label in all_labels:
with torch.no_grad():
all_queries, all_positive_map_label_to_token = od_grounding_converter.inference_od_to_grounding(dataset, cfg, negative_label=cur_label, negative_index=negative_index)
if cfg.TEST.USE_MULTISCALE:
query_time = len(all_queries)
for query_i in range(query_time):
if task == "detection":
captions = [all_queries[query_i] for ii in range(len(targets))]
positive_map_label_to_token = all_positive_map_label_to_token[query_i]
else:
captions = None
positive_map_label_to_token = None
output = im_detect_bbox_aug(model, images, device, captions, positive_map_label_to_token)
output = [o.to(cpu_device) for o in output]
all_output.append(output)
else:
images = images.to(device)
query_time = len(all_queries)
output_for_one_image = []
for query_i in range(query_time):
if not isinstance(targets[0], dict): # For LVIS dataset and datasets directly copied from MDETR
targets = [target.to(device) for target in targets]
"""
different datasets seem to have different data format... For LVIS dataset, the target is a dictionary, while for modulatedDataset such as COCO/Flickr, the target is a BoxList
"""
if task == "detection":
captions = [all_queries[query_i] for ii in range(len(targets))]
positive_map_label_to_token = all_positive_map_label_to_token[query_i]
if cfg.MODEL.DYHEAD.FUSE_CONFIG.SPAN_VERSION is not None:
positive_map_label_to_token, span_map, spans = positive_map_label_to_token
spans = [spans] # Let's just use one image per batch
else:
span_map = None
spans = None
elif task == "grounding":
captions = [t.get_field("caption") for t in targets]
positive_map_eval = [
t.get_field("positive_map_eval")
if t.has_field("positive_map_eval")
else t.get_field("positive_map")
for t in targets
]
if cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
plus = 1
else:
plus = 0
assert len(positive_map_eval) == 1 # Let's just use one image per batch
positive_map_eval = positive_map_eval[0]
positive_map_label_to_token = create_positive_map_label_to_token_from_positive_map(
positive_map_eval, plus=plus
)
span_map = None
spans = None
output = model(images, captions=captions, positive_map=positive_map_label_to_token, spans = spans, span_map=span_map)
if cfg.TEST.CHUNK_INFERENCE_VERSION == "v2":
assert(len(output) == 1)
output_for_one_image.append(output[0])
else:
output = [o.to(cpu_device) for o in output]
if cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
plus = 1
else:
plus = 0
output, visualization_output = post_process(
cfg.DATASETS.TEST[0],
output, targets, positive_map_label_to_token, plus=plus, categories=categories, captions=captions)
if evaluator is not None:
mdetr_style_output.append(output)
else:
all_output.append(output)
visualization_outputs.append(visualization_output)
if cfg.TEST.CHUNK_INFERENCE_VERSION == "v2":
# merge boxes
output = cat_boxlist(output_for_one_image)
output = model.rpn.box_selector_test.select_over_all_levels([output])
output = [o.to(cpu_device) for o in output]
if cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
plus = 1
else:
plus = 0
output, visualization_output = post_process(
output, targets, positive_map_label_to_token, plus=plus, categories=categories,)
if evaluator is not None:
mdetr_style_output.append(output)
else:
all_output.append(output)
visualization_outputs.append(visualization_output)
prediction_data_tsv.update(images, process_for_vis(cfg.DATASETS.TEST[0], image_ids, visualization_outputs)) # write the prediction data to tsv file
if evaluator is not None:
try:
evaluator.update(mdetr_style_output)
except:
evaluator.update(mdetr_style_output[0])
else:
output = [[row[_i] for row in all_output] for _i in range(len(all_output[0]))]
for index, i in enumerate(output):
output[index] = i[0].concate_box_list(i)
results_dict.update({img_id: result for img_id, result in zip(image_ids, output)})
if evaluator is not None:
evaluator.synchronize_between_processes()
try:
evaluator.accumulate()
except:
print("Evaluator has no accumulation, skipped...")
try:
score, results_processed = evaluator.summarize()
pprint(results_processed)
except:
score = evaluator.summarize()
results_processed = None
if is_main_process():
if wandb_run is not None:
#
dataset_name = cfg.DATASETS.TEST[0]
write_to_wandb_log(score, dataset_name, weight_iter, history)
with open("{}/detailed.json".format(output_folder), "w") as f:
json.dump(results_processed, f)
wandb_run.save("{}/detailed.json".format(output_folder))
pprint(score)
import maskrcnn_benchmark.utils.mdetr_dist as dist
if is_main_process():
if "flickr" in cfg.DATASETS.TEST[0]:
write_flickr_results(score, output_file_name=os.path.join(output_folder, "bbox.csv"))
elif "lvis" in cfg.DATASETS.TEST[0]:
write_lvis_results(score, output_file_name=os.path.join(output_folder, "bbox.csv"))
elif "refcoco" in cfg.DATASETS.TEST[0] and output_folder is not None:
write_refexp_results(score, output_file_name=os.path.join(output_folder, "Recall_results.csv"))
try:
torch.distributed.barrier()
except:
print("Default process group is not initialized")
return
if evaluator is not None:
predictions = mdetr_style_output
else:
predictions = results_dict
# wait for all processes to complete before measuring the time
synchronize()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=total_time))
logger.info(
"Total inference time: {} ({} s / img per device, on {} devices)".format(
total_time_str, total_time * num_devices / len(dataset), num_devices
)
)
predictions = _accumulate_predictions_from_multiple_gpus(predictions)
print("Accumulated results")
if not is_main_process():
return None
if output_folder:
torch.save(predictions, os.path.join(output_folder, "predictions.pth"))
extra_args = dict(
box_only=box_only,
iou_types=iou_types,
expected_results=expected_results,
expected_results_sigma_tol=expected_results_sigma_tol,
)
results = evaluate(dataset=dataset, predictions=predictions, output_folder=output_folder, **extra_args)
if is_main_process():
if wandb_run is not None:
dataset_name = cfg.DATASETS.TEST[0]
write_to_wandb_log(results, dataset_name, weight_iter, history)
# with open("{}/detailed.json".format(output_folder), "w") as f:
# json.dump(results, f)
# wandb_run.save("{}/detailed.json".format(output_folder))
return results |