Spaces:
Sleeping
Sleeping
File size: 13,036 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import time
import pickle
import logging
import os
import numpy as np
import torch
import torch.nn as nn
from collections import OrderedDict
from yaml import safe_dump
from yacs.config import load_cfg, CfgNode # , _to_dict
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.engine.inference import _accumulate_predictions_from_multiple_gpus
from maskrcnn_benchmark.modeling.backbone.nas import get_layer_name
from maskrcnn_benchmark.utils.comm import synchronize, get_rank, is_main_process, get_world_size, all_gather
from maskrcnn_benchmark.data.datasets.evaluation import evaluate
from maskrcnn_benchmark.utils.flops import profile
choice = lambda x: x[np.random.randint(len(x))] if isinstance(x, tuple) else choice(tuple(x))
def gather_candidates(all_candidates):
all_candidates = all_gather(all_candidates)
all_candidates = [cand for candidates in all_candidates for cand in candidates]
return list(set(all_candidates))
def gather_stats(all_candidates):
all_candidates = all_gather(all_candidates)
reduced_statcs = {}
for candidates in all_candidates:
reduced_statcs.update(candidates) # will replace the existing key with last value if more than one exists
return reduced_statcs
def compute_on_dataset(model, rngs, data_loader, device=cfg.MODEL.DEVICE):
model.eval()
results_dict = {}
cpu_device = torch.device("cpu")
for _, batch in enumerate(data_loader):
images, targets, image_ids = batch
with torch.no_grad():
output = model(images.to(device), rngs=rngs)
output = [o.to(cpu_device) for o in output]
results_dict.update({img_id: result for img_id, result in zip(image_ids, output)})
return results_dict
def bn_statistic(model, rngs, data_loader, device=cfg.MODEL.DEVICE, max_iter=500):
for name, param in model.named_buffers():
if "running_mean" in name:
nn.init.constant_(param, 0)
if "running_var" in name:
nn.init.constant_(param, 1)
model.train()
for iteration, (images, targets, _) in enumerate(data_loader, 1):
images = images.to(device)
targets = [target.to(device) for target in targets]
with torch.no_grad():
loss_dict = model(images, targets, rngs)
if iteration >= max_iter:
break
return model
def inference(
model,
rngs,
data_loader,
iou_types=("bbox",),
box_only=False,
device="cuda",
expected_results=(),
expected_results_sigma_tol=4,
output_folder=None,
):
# convert to a torch.device for efficiency
device = torch.device(device)
dataset = data_loader.dataset
predictions = compute_on_dataset(model, rngs, data_loader, device)
# wait for all processes to complete before measuring the time
synchronize()
predictions = _accumulate_predictions_from_multiple_gpus(predictions)
if not is_main_process():
return
extra_args = dict(
box_only=box_only,
iou_types=iou_types,
expected_results=expected_results,
expected_results_sigma_tol=expected_results_sigma_tol,
)
return evaluate(dataset=dataset, predictions=predictions, output_folder=output_folder, **extra_args)
def fitness(cfg, model, rngs, val_loaders):
iou_types = ("bbox",)
if cfg.MODEL.MASK_ON:
iou_types = iou_types + ("segm",)
for data_loader_val in val_loaders:
results = inference(
model,
rngs,
data_loader_val,
iou_types=iou_types,
box_only=False,
device=cfg.MODEL.DEVICE,
expected_results=cfg.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
)
synchronize()
return results
class EvolutionTrainer(object):
def __init__(self, cfg, model, flops_limit=None, is_distributed=True):
self.log_dir = cfg.OUTPUT_DIR
self.checkpoint_name = os.path.join(self.log_dir, "evolution.pth")
self.is_distributed = is_distributed
self.states = model.module.mix_nums if is_distributed else model.mix_nums
self.supernet_state_dict = pickle.loads(pickle.dumps(model.state_dict()))
self.flops_limit = flops_limit
self.model = model
self.candidates = []
self.vis_dict = {}
self.max_epochs = cfg.SEARCH.MAX_EPOCH
self.select_num = cfg.SEARCH.SELECT_NUM
self.population_num = cfg.SEARCH.POPULATION_NUM / get_world_size()
self.mutation_num = cfg.SEARCH.MUTATION_NUM / get_world_size()
self.crossover_num = cfg.SEARCH.CROSSOVER_NUM / get_world_size()
self.mutation_prob = cfg.SEARCH.MUTATION_PROB / get_world_size()
self.keep_top_k = {self.select_num: [], 50: []}
self.epoch = 0
self.cfg = cfg
def save_checkpoint(self):
if not is_main_process():
return
if not os.path.exists(self.log_dir):
os.makedirs(self.log_dir)
info = {}
info["candidates"] = self.candidates
info["vis_dict"] = self.vis_dict
info["keep_top_k"] = self.keep_top_k
info["epoch"] = self.epoch
torch.save(info, self.checkpoint_name)
print("Save checkpoint to", self.checkpoint_name)
def load_checkpoint(self):
if not os.path.exists(self.checkpoint_name):
return False
info = torch.load(self.checkpoint_name)
self.candidates = info["candidates"]
self.vis_dict = info["vis_dict"]
self.keep_top_k = info["keep_top_k"]
self.epoch = info["epoch"]
print("Load checkpoint from", self.checkpoint_name)
return True
def legal(self, cand):
assert isinstance(cand, tuple) and len(cand) == len(self.states)
if cand in self.vis_dict:
return False
if self.flops_limit is not None:
net = self.model.module.backbone if self.is_distributed else self.model.backbone
inp = (1, 3, 224, 224)
flops, params = profile(net, inp, extra_args={"paths": list(cand)})
flops = flops / 1e6
print("flops:", flops)
if flops > self.flops_limit:
return False
return True
def update_top_k(self, candidates, *, k, key, reverse=False):
assert k in self.keep_top_k
# print('select ......')
t = self.keep_top_k[k]
t += candidates
t.sort(key=key, reverse=reverse)
self.keep_top_k[k] = t[:k]
def eval_candidates(self, train_loader, val_loader):
for cand in self.candidates:
t0 = time.time()
# load back supernet state dict
self.model.load_state_dict(self.supernet_state_dict)
# bn_statistic
model = bn_statistic(self.model, list(cand), train_loader)
# fitness
evals = fitness(cfg, model, list(cand), val_loader)
if is_main_process():
acc = evals[0].results["bbox"]["AP"]
self.vis_dict[cand] = acc
print("candiate ", cand)
print("time: {}s".format(time.time() - t0))
print("acc ", acc)
def stack_random_cand(self, random_func, *, batchsize=10):
while True:
cands = [random_func() for _ in range(batchsize)]
for cand in cands:
yield cand
def random_can(self, num):
# print('random select ........')
candidates = []
cand_iter = self.stack_random_cand(lambda: tuple(np.random.randint(i) for i in self.states))
while len(candidates) < num:
cand = next(cand_iter)
if not self.legal(cand):
continue
candidates.append(cand)
# print('random {}/{}'.format(len(candidates),num))
# print('random_num = {}'.format(len(candidates)))
return candidates
def get_mutation(self, k, mutation_num, m_prob):
assert k in self.keep_top_k
# print('mutation ......')
res = []
iter = 0
max_iters = mutation_num * 10
def random_func():
cand = list(choice(self.keep_top_k[k]))
for i in range(len(self.states)):
if np.random.random_sample() < m_prob:
cand[i] = np.random.randint(self.states[i])
return tuple(cand)
cand_iter = self.stack_random_cand(random_func)
while len(res) < mutation_num and max_iters > 0:
cand = next(cand_iter)
if not self.legal(cand):
continue
res.append(cand)
# print('mutation {}/{}'.format(len(res),mutation_num))
max_iters -= 1
# print('mutation_num = {}'.format(len(res)))
return res
def get_crossover(self, k, crossover_num):
assert k in self.keep_top_k
# print('crossover ......')
res = []
iter = 0
max_iters = 10 * crossover_num
def random_func():
p1 = choice(self.keep_top_k[k])
p2 = choice(self.keep_top_k[k])
return tuple(choice([i, j]) for i, j in zip(p1, p2))
cand_iter = self.stack_random_cand(random_func)
while len(res) < crossover_num and max_iters > 0:
cand = next(cand_iter)
if not self.legal(cand):
continue
res.append(cand)
# print('crossover {}/{}'.format(len(res),crossover_num))
max_iters -= 1
# print('crossover_num = {}'.format(len(res)))
return res
def train(self, train_loader, val_loader):
logger = logging.getLogger("maskrcnn_benchmark.evolution")
if not self.load_checkpoint():
self.candidates = gather_candidates(self.random_can(self.population_num))
while self.epoch < self.max_epochs:
self.eval_candidates(train_loader, val_loader)
self.vis_dict = gather_stats(self.vis_dict)
self.update_top_k(self.candidates, k=self.select_num, key=lambda x: 1 - self.vis_dict[x])
self.update_top_k(self.candidates, k=50, key=lambda x: 1 - self.vis_dict[x])
if is_main_process():
logger.info("Epoch {} : top {} result".format(self.epoch + 1, len(self.keep_top_k[self.select_num])))
for i, cand in enumerate(self.keep_top_k[self.select_num]):
logger.info(" No.{} {} perf = {}".format(i + 1, cand, self.vis_dict[cand]))
mutation = gather_candidates(self.get_mutation(self.select_num, self.mutation_num, self.mutation_prob))
crossover = gather_candidates(self.get_crossover(self.select_num, self.crossover_num))
rand = gather_candidates(self.random_can(self.population_num - len(mutation) - len(crossover)))
self.candidates = mutation + crossover + rand
self.epoch += 1
self.save_checkpoint()
def save_candidates(self, cand, template):
paths = self.keep_top_k[self.select_num][cand - 1]
with open(template, "r") as f:
super_cfg = load_cfg(f)
search_spaces = {}
for mix_ops in super_cfg.MODEL.BACKBONE.LAYER_SEARCH:
search_spaces[mix_ops] = super_cfg.MODEL.BACKBONE.LAYER_SEARCH[mix_ops]
search_layers = super_cfg.MODEL.BACKBONE.LAYER_SETUP
layer_setup = []
for i, layer in enumerate(search_layers):
name, setup = get_layer_name(layer, search_spaces)
if not isinstance(name, list):
name = [name]
name = name[paths[i]]
layer_setup.append("('{}', {})".format(name, str(setup)[1:-1]))
super_cfg.MODEL.BACKBONE.LAYER_SETUP = layer_setup
cand_cfg = _to_dict(super_cfg)
del cand_cfg["MODEL"]["BACKBONE"]["LAYER_SEARCH"]
with open(
os.path.join(self.cfg.OUTPUT_DIR, os.path.basename(template)).replace(".yaml", "_cand{}.yaml".format(cand)),
"w",
) as f:
f.writelines(safe_dump(cand_cfg))
super_weight = self.supernet_state_dict
cand_weight = OrderedDict()
cand_keys = ["layers.{}.ops.{}".format(i, c) for i, c in enumerate(paths)]
for key, val in super_weight.items():
if "ops" in key:
for ck in cand_keys:
if ck in key:
cand_weight[key.replace(ck, ck.split(".ops.")[0])] = val
else:
cand_weight[key] = val
torch.save({"model": cand_weight}, os.path.join(self.cfg.OUTPUT_DIR, "init_cand{}.pth".format(cand)))
|