Spaces:
Sleeping
Sleeping
File size: 17,581 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from .deform_conv import DeformConv2d
def add_conv(in_ch, out_ch, ksize, stride, leaky=True):
"""
Add a conv2d / batchnorm / leaky ReLU block.
Args:
in_ch (int): number of input channels of the convolution layer.
out_ch (int): number of output channels of the convolution layer.
ksize (int): kernel size of the convolution layer.
stride (int): stride of the convolution layer.
Returns:
stage (Sequential) : Sequential layers composing a convolution block.
"""
stage = nn.Sequential()
pad = (ksize - 1) // 2
stage.add_module(
"conv",
nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=ksize, stride=stride, padding=pad, bias=False),
)
stage.add_module("batch_norm", nn.BatchNorm2d(out_ch))
if leaky:
stage.add_module("leaky", nn.LeakyReLU(0.1))
else:
stage.add_module("relu6", nn.ReLU6(inplace=True))
return stage
class upsample(nn.Module):
__constants__ = ["size", "scale_factor", "mode", "align_corners", "name"]
def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None):
super(upsample, self).__init__()
self.name = type(self).__name__
self.size = size
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, input):
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners)
def extra_repr(self):
if self.scale_factor is not None:
info = "scale_factor=" + str(self.scale_factor)
else:
info = "size=" + str(self.size)
info += ", mode=" + self.mode
return info
class SPPLayer(nn.Module):
def __init__(self):
super(SPPLayer, self).__init__()
def forward(self, x):
x_1 = x
x_2 = F.max_pool2d(x, 5, stride=1, padding=2)
x_3 = F.max_pool2d(x, 9, stride=1, padding=4)
x_4 = F.max_pool2d(x, 13, stride=1, padding=6)
out = torch.cat((x_1, x_2, x_3, x_4), dim=1)
return out
class DropBlock(nn.Module):
def __init__(self, block_size=7, keep_prob=0.9):
super(DropBlock, self).__init__()
self.block_size = block_size
self.keep_prob = keep_prob
self.gamma = None
self.kernel_size = (block_size, block_size)
self.stride = (1, 1)
self.padding = (block_size // 2, block_size // 2)
def reset(self, block_size, keep_prob):
self.block_size = block_size
self.keep_prob = keep_prob
self.gamma = None
self.kernel_size = (block_size, block_size)
self.stride = (1, 1)
self.padding = (block_size // 2, block_size // 2)
def calculate_gamma(self, x):
return (
(1 - self.keep_prob) * x.shape[-1] ** 2 / (self.block_size**2 * (x.shape[-1] - self.block_size + 1) ** 2)
)
def forward(self, x):
if not self.training or self.keep_prob == 1: # set keep_prob=1 to turn off dropblock
return x
if self.gamma is None:
self.gamma = self.calculate_gamma(x)
if x.type() == "torch.cuda.HalfTensor": # TODO: not fully support for FP16 now
FP16 = True
x = x.float()
else:
FP16 = False
p = torch.ones_like(x) * (self.gamma)
mask = 1 - torch.nn.functional.max_pool2d(torch.bernoulli(p), self.kernel_size, self.stride, self.padding)
out = mask * x * (mask.numel() / mask.sum())
if FP16:
out = out.half()
return out
class resblock(nn.Module):
"""
Sequential residual blocks each of which consists of \
two convolution layers.
Args:
ch (int): number of input and output channels.
nblocks (int): number of residual blocks.
shortcut (bool): if True, residual tensor addition is enabled.
"""
def __init__(self, ch, nblocks=1, shortcut=True):
super().__init__()
self.shortcut = shortcut
self.module_list = nn.ModuleList()
for i in range(nblocks):
resblock_one = nn.ModuleList()
resblock_one.append(add_conv(ch, ch // 2, 1, 1))
resblock_one.append(add_conv(ch // 2, ch, 3, 1))
self.module_list.append(resblock_one)
def forward(self, x):
for module in self.module_list:
h = x
for res in module:
h = res(h)
x = x + h if self.shortcut else h
return x
class RFBblock(nn.Module):
def __init__(self, in_ch, residual=False):
super(RFBblock, self).__init__()
inter_c = in_ch // 4
self.branch_0 = nn.Sequential(
nn.Conv2d(in_channels=in_ch, out_channels=inter_c, kernel_size=1, stride=1, padding=0),
)
self.branch_1 = nn.Sequential(
nn.Conv2d(in_channels=in_ch, out_channels=inter_c, kernel_size=1, stride=1, padding=0),
nn.Conv2d(in_channels=inter_c, out_channels=inter_c, kernel_size=3, stride=1, padding=1),
)
self.branch_2 = nn.Sequential(
nn.Conv2d(in_channels=in_ch, out_channels=inter_c, kernel_size=1, stride=1, padding=0),
nn.Conv2d(in_channels=inter_c, out_channels=inter_c, kernel_size=3, stride=1, padding=1),
nn.Conv2d(in_channels=inter_c, out_channels=inter_c, kernel_size=3, stride=1, dilation=2, padding=2),
)
self.branch_3 = nn.Sequential(
nn.Conv2d(in_channels=in_ch, out_channels=inter_c, kernel_size=1, stride=1, padding=0),
nn.Conv2d(in_channels=inter_c, out_channels=inter_c, kernel_size=5, stride=1, padding=2),
nn.Conv2d(in_channels=inter_c, out_channels=inter_c, kernel_size=3, stride=1, dilation=3, padding=3),
)
self.residual = residual
def forward(self, x):
x_0 = self.branch_0(x)
x_1 = self.branch_1(x)
x_2 = self.branch_2(x)
x_3 = self.branch_3(x)
out = torch.cat((x_0, x_1, x_2, x_3), 1)
if self.residual:
out += x
return out
class FeatureAdaption(nn.Module):
def __init__(self, in_ch, out_ch, n_anchors, rfb=False, sep=False):
super(FeatureAdaption, self).__init__()
if sep:
self.sep = True
else:
self.sep = False
self.conv_offset = nn.Conv2d(
in_channels=2 * n_anchors,
out_channels=2 * 9 * n_anchors,
groups=n_anchors,
kernel_size=1,
stride=1,
padding=0,
)
self.dconv = DeformConv2d(
in_channels=in_ch, out_channels=out_ch, kernel_size=3, stride=1, padding=1, deformable_groups=n_anchors
)
self.rfb = None
if rfb:
self.rfb = RFBblock(out_ch)
def forward(self, input, wh_pred):
# The RFB block is added behind FeatureAdaption
# For mobilenet, we currently don't support rfb and FeatureAdaption
if self.sep:
return input
if self.rfb is not None:
input = self.rfb(input)
wh_pred_new = wh_pred.detach()
offset = self.conv_offset(wh_pred_new)
out = self.dconv(input, offset)
return out
class ASFFmobile(nn.Module):
def __init__(self, level, rfb=False, vis=False):
super(ASFFmobile, self).__init__()
self.level = level
self.dim = [512, 256, 128]
self.inter_dim = self.dim[self.level]
if level == 0:
self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2, leaky=False)
self.stride_level_2 = add_conv(128, self.inter_dim, 3, 2, leaky=False)
self.expand = add_conv(self.inter_dim, 1024, 3, 1, leaky=False)
elif level == 1:
self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1, leaky=False)
self.stride_level_2 = add_conv(128, self.inter_dim, 3, 2, leaky=False)
self.expand = add_conv(self.inter_dim, 512, 3, 1, leaky=False)
elif level == 2:
self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1, leaky=False)
self.compress_level_1 = add_conv(256, self.inter_dim, 1, 1, leaky=False)
self.expand = add_conv(self.inter_dim, 256, 3, 1, leaky=False)
compress_c = 8 if rfb else 16 # when adding rfb, we use half number of channels to save memory
self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1, leaky=False)
self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1, leaky=False)
self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1, leaky=False)
self.weight_levels = nn.Conv2d(compress_c * 3, 3, kernel_size=1, stride=1, padding=0)
self.vis = vis
def forward(self, x_level_0, x_level_1, x_level_2):
if self.level == 0:
level_0_resized = x_level_0
level_1_resized = self.stride_level_1(x_level_1)
level_2_downsampled_inter = F.max_pool2d(x_level_2, 3, stride=2, padding=1)
level_2_resized = self.stride_level_2(level_2_downsampled_inter)
elif self.level == 1:
level_0_compressed = self.compress_level_0(x_level_0)
level_0_resized = F.interpolate(level_0_compressed, scale_factor=2, mode="nearest")
level_1_resized = x_level_1
level_2_resized = self.stride_level_2(x_level_2)
elif self.level == 2:
level_0_compressed = self.compress_level_0(x_level_0)
level_0_resized = F.interpolate(level_0_compressed, scale_factor=4, mode="nearest")
level_1_compressed = self.compress_level_1(x_level_1)
level_1_resized = F.interpolate(level_1_compressed, scale_factor=2, mode="nearest")
level_2_resized = x_level_2
level_0_weight_v = self.weight_level_0(level_0_resized)
level_1_weight_v = self.weight_level_1(level_1_resized)
level_2_weight_v = self.weight_level_2(level_2_resized)
levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v), 1)
levels_weight = self.weight_levels(levels_weight_v)
levels_weight = F.softmax(levels_weight, dim=1)
fused_out_reduced = (
level_0_resized * levels_weight[:, 0:1, :, :]
+ level_1_resized * levels_weight[:, 1:2, :, :]
+ level_2_resized * levels_weight[:, 2:, :, :]
)
out = self.expand(fused_out_reduced)
if self.vis:
return out, levels_weight, fused_out_reduced.sum(dim=1)
else:
return out
class ASFF(nn.Module):
def __init__(self, level, rfb=False, vis=False):
super(ASFF, self).__init__()
self.level = level
self.dim = [512, 256, 256]
self.inter_dim = self.dim[self.level]
if level == 0:
self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2)
self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
self.expand = add_conv(self.inter_dim, 1024, 3, 1)
elif level == 1:
self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2)
self.expand = add_conv(self.inter_dim, 512, 3, 1)
elif level == 2:
self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1)
self.expand = add_conv(self.inter_dim, 256, 3, 1)
compress_c = 8 if rfb else 16 # when adding rfb, we use half number of channels to save memory
self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1)
self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1)
self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1)
self.weight_levels = nn.Conv2d(compress_c * 3, 3, kernel_size=1, stride=1, padding=0)
self.vis = vis
def forward(self, x_level_0, x_level_1, x_level_2):
if self.level == 0:
level_0_resized = x_level_0
level_1_resized = self.stride_level_1(x_level_1)
level_2_downsampled_inter = F.max_pool2d(x_level_2, 3, stride=2, padding=1)
level_2_resized = self.stride_level_2(level_2_downsampled_inter)
elif self.level == 1:
level_0_compressed = self.compress_level_0(x_level_0)
level_0_resized = F.interpolate(level_0_compressed, scale_factor=2, mode="nearest")
level_1_resized = x_level_1
level_2_resized = self.stride_level_2(x_level_2)
elif self.level == 2:
level_0_compressed = self.compress_level_0(x_level_0)
level_0_resized = F.interpolate(level_0_compressed, scale_factor=4, mode="nearest")
level_1_resized = F.interpolate(x_level_1, scale_factor=2, mode="nearest")
level_2_resized = x_level_2
level_0_weight_v = self.weight_level_0(level_0_resized)
level_1_weight_v = self.weight_level_1(level_1_resized)
level_2_weight_v = self.weight_level_2(level_2_resized)
levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v), 1)
levels_weight = self.weight_levels(levels_weight_v)
levels_weight = F.softmax(levels_weight, dim=1)
fused_out_reduced = (
level_0_resized * levels_weight[:, 0:1, :, :]
+ level_1_resized * levels_weight[:, 1:2, :, :]
+ level_2_resized * levels_weight[:, 2:, :, :]
)
out = self.expand(fused_out_reduced)
if self.vis:
return out, levels_weight, fused_out_reduced.sum(dim=1)
else:
return out
def make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes),
nn.ReLU6(inplace=True),
)
def add_sepconv(in_ch, out_ch, ksize, stride):
stage = nn.Sequential()
pad = (ksize - 1) // 2
stage.add_module(
"sepconv",
nn.Conv2d(
in_channels=in_ch,
out_channels=in_ch,
kernel_size=ksize,
stride=stride,
padding=pad,
groups=in_ch,
bias=False,
),
)
stage.add_module("sepbn", nn.BatchNorm2d(in_ch))
stage.add_module("seprelu6", nn.ReLU6(inplace=True))
stage.add_module("ptconv", nn.Conv2d(in_ch, out_ch, 1, 1, 0, bias=False))
stage.add_module("ptbn", nn.BatchNorm2d(out_ch))
stage.add_module("ptrelu6", nn.ReLU6(inplace=True))
return stage
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend(
[
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
]
)
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class ressepblock(nn.Module):
def __init__(self, ch, out_ch, in_ch=None, shortcut=True):
super().__init__()
self.shortcut = shortcut
self.module_list = nn.ModuleList()
in_ch = ch // 2 if in_ch == None else in_ch
resblock_one = nn.ModuleList()
resblock_one.append(add_conv(ch, in_ch, 1, 1, leaky=False))
resblock_one.append(add_conv(in_ch, out_ch, 3, 1, leaky=False))
self.module_list.append(resblock_one)
def forward(self, x):
for module in self.module_list:
h = x
for res in module:
h = res(h)
x = x + h if self.shortcut else h
return x
|