File size: 37,124 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import datetime
import logging
import time
import os
import re

import torch
from tqdm import tqdm
from collections import defaultdict
import torch.distributed as dist

from maskrcnn_benchmark.data.datasets.evaluation import evaluate, im_detect_bbox_aug
from ..utils.comm import is_main_process
from ..utils.comm import all_gather
from ..utils.comm import synchronize
from .tsv_saver import TSVResultWriter
import pdb
from maskrcnn_benchmark.data.datasets.evaluation.flickr.flickr_eval import FlickrEvaluator

from maskrcnn_benchmark.data.datasets.refexp import RefExpEvaluator
from maskrcnn_benchmark.structures.bounding_box import BoxList
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
from maskrcnn_benchmark.data.datasets.tsv import load_from_yaml_file
from sentence_transformers import SentenceTransformer
from numpy.random import RandomState
import fastcluster
import collections
import scipy
import numpy as np
import scipy.cluster
import sklearn
import base64
import cv2, json
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.data.datasets.od_to_grounding import clean_name
from maskrcnn_benchmark.data.datasets._od_to_description import DescriptionConverter

from copy import deepcopy
from pprint import pprint
import wandb
def imshow(img, file_name = "tmp.jpg"):
    plt.imshow(img[:, :, [2, 1, 0]])
    plt.axis("off")
    #plt.figtext(0.5, 0.09, "test", wrap=True, horizontalalignment='center', fontsize=20)
    plt.savefig(file_name)
def load(url_or_file_name):
    try:
        response = requests.get(url_or_file_name)
    except:
        response = None
    if response is None:
        pil_image = Image.open(url_or_file_name).convert("RGB")
    else:
        pil_image = Image.open(BytesIO(response.content)).convert("RGB")
    # convert to BGR format
    image = np.array(pil_image)[:, :, [2, 1, 0]]
    return image

def inference_default(

    model,

    data_loader,

    dataset_name,

    iou_types=("bbox",),

    box_only=False,

    device="cuda",

    expected_results=(),

    expected_results_sigma_tol=4,

    output_folder=None,

    cfg=None,

):
    # convert to a torch.device for efficiency
    device = torch.device(device)
    num_devices = torch.distributed.get_world_size() if torch.distributed.is_initialized() else 1
    logger = logging.getLogger("maskrcnn_benchmark.inference")
    dataset = data_loader.dataset
    logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset)))
    start_time = time.time()

    model.eval()
    results_dict = {}
    cpu_device = torch.device("cpu")
    for i, batch in enumerate(tqdm(data_loader)):
        images, targets, image_ids, *_ = batch
        with torch.no_grad():
            if cfg.TEST.USE_MULTISCALE:
                output = im_detect_bbox_aug(model, images, device)
            else:
                output = model(images.to(device))
            output = [o.to(cpu_device) for o in output]
        results_dict.update({img_id: result for img_id, result in zip(image_ids, output)})
    predictions = results_dict
    # wait for all processes to complete before measuring the time
    synchronize()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=total_time))
    logger.info(
        "Total inference time: {} ({} s / img per device, on {} devices)".format(
            total_time_str, total_time * num_devices / len(dataset), num_devices
        )
    )

    predictions = _accumulate_predictions_from_multiple_gpus(predictions)
    if not is_main_process():
        return None

    if output_folder:
        torch.save(predictions, os.path.join(output_folder, "predictions.pth"))

    extra_args = dict(
        box_only=box_only,
        iou_types=iou_types,
        expected_results=expected_results,
        expected_results_sigma_tol=expected_results_sigma_tol,
    )
    return evaluate(dataset=dataset, predictions=predictions, output_folder=output_folder, **extra_args)


def clean_name(name):
    name = re.sub(r"\(.*\)", "", name)
    name = re.sub(r"_", " ", name)
    name = re.sub(r"  ", " ", name)
    return name


def create_one_hot_dict(labels, no_minus_one_for_one_hot=False):
    positive_map_token_to_label = defaultdict(int)
    positive_map_label_to_token = defaultdict(int)

    for i in range(len(labels)):
        positive_map_token_to_label[i] = labels[i]
        positive_map_label_to_token[labels[i]] = i

    if no_minus_one_for_one_hot:
        positive_map_token_to_label = defaultdict(int)
        positive_map_label_to_token = defaultdict(int)

        for i in range(len(labels)):
            positive_map_token_to_label[i + 1] = labels[i]
            positive_map_label_to_token[labels[i]] = i + 1

    return positive_map_token_to_label, positive_map_label_to_token


def create_positive_dict(tokenized, tokens_positive, labels):
    """construct a dictionary such that positive_map[i] = j, iff token i is mapped to j label"""
    positive_map = defaultdict(int)

    # Additionally, have positive_map_label_to_tokens
    positive_map_label_to_token = defaultdict(list)

    for j, tok_list in enumerate(tokens_positive):
        for (beg, end) in tok_list:
            beg_pos = tokenized.char_to_token(beg)
            end_pos = tokenized.char_to_token(end - 1)
            if beg_pos is None:
                try:
                    beg_pos = tokenized.char_to_token(beg + 1)
                    if beg_pos is None:
                        beg_pos = tokenized.char_to_token(beg + 2)
                except:
                    beg_pos = None
            if end_pos is None:
                try:
                    end_pos = tokenized.char_to_token(end - 2)
                    if end_pos is None:
                        end_pos = tokenized.char_to_token(end - 3)
                except:
                    end_pos = None
            if beg_pos is None or end_pos is None:
                continue

            assert beg_pos is not None and end_pos is not None
            for i in range(beg_pos, end_pos + 1):
                positive_map[i] = labels[j]  # because the labels starts from 1
                positive_map_label_to_token[labels[j]].append(i)
            # positive_map[j, beg_pos : end_pos + 1].fill_(1)
    return positive_map, positive_map_label_to_token  # / (positive_map.sum(-1)[:, None] + 1e-6)


def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    all_ = []
    for i in range(0, len(lst), n):
        data_index = lst[i : i + n]
        all_.append(data_index)
    counter = 0
    for i in all_:
        counter += len(i)
    assert counter == len(lst)

    return all_


sbert_model = None
def _get_sbert_model():
    global sbert_model
    if not sbert_model:
        sbert_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
    return sbert_model

def semantic_deduplicate_captions(captions,

                                  label_list, 

                                  keep_p=.8,

                                  must_keep_idxs=None,

                                  seed=1, verbose=False,

                                  return_features=False,

                                  force_exact=False):
    '''

    keep_p can be a proportion to keep, e.g., .5, or it can be an int representing the number to keep, like 10.

    '''
    original_captions = deepcopy(captions)
    captions = ["This is " + c for c in captions]
    prng = RandomState(seed)

    must_keep_idxs = set(must_keep_idxs) if must_keep_idxs is not None else set()

    sbert =_get_sbert_model()
    features = sbert.encode([c for c in captions], show_progress_bar=verbose)
    pdists = sklearn.metrics.pairwise_distances(features, metric='cosine')
    # numerical issues...
    np.fill_diagonal(pdists, 0.0)
    pdists = (pdists + pdists.transpose()) / 2
    pdists = scipy.spatial.distance.squareform(pdists)
    res = fastcluster.linkage(pdists, method='average', preserve_input=False)
    del pdists
    if keep_p < 1:
        n_keep_from_cluster = int(np.round(keep_p*(len(captions))))
    else:
        n_keep_from_cluster = min(keep_p, len(captions))
    print('going to keep {} out of {} captions'.format(n_keep_from_cluster, len(captions)))
    clusters = scipy.cluster.hierarchy.fcluster(res, n_keep_from_cluster, criterion='maxclust')

    cluster2idxs = collections.defaultdict(list)
    for idx, cluster in enumerate(clusters):
        cluster2idxs[cluster].append(idx)

    # algo:
    # 1. go through clusters with must includes, add must keeps.
    # 2. for each cluster without a must keep, add it to candidate list, shuffle candidate list
    # 3. loop over each candidate in the candidate list until the return set is the correct size.

    chunked_labels = []
    chunked_label_list = []
    for c, idxs in cluster2idxs.items():
        chunked_labels.append([original_captions[i] for i in idxs])
        chunked_label_list.append([label_list[i] for i in idxs])    
    print("size of each prompt:", [len(i) for i in chunked_labels])
    return chunked_labels, chunked_label_list
    

def create_queries_and_maps_from_dataset(dataset, cfg):
    categories = dataset.categories()
    # one_hot = dataset.one_hot

    labels = []
    label_list = []
    keys = list(categories.keys())
    keys.sort()
    for i in keys:
        labels.append(i)
        label_list.append(categories[i])

    if cfg.TEST.CHUNKED_EVALUATION != -1:
        if cfg.TEST.CHUNK_METHOD == "similar":
            label_list, labels = semantic_deduplicate_captions(
                label_list, labels, keep_p=len(labels) // cfg.TEST.CHUNKED_EVALUATION,)
        else:
            labels = chunks(labels, cfg.TEST.CHUNKED_EVALUATION)
            label_list = chunks(label_list, cfg.TEST.CHUNKED_EVALUATION)
    else:
        labels = [labels]
        label_list = [label_list]

    all_queries = []
    all_positive_map_label_to_token = []

    for i in range(len(labels)):
        labels_i = labels[i]
        label_list_i = label_list[i]
        query_i, positive_map_label_to_token_i = create_queries_and_maps(
            labels_i,
            label_list_i,
            additional_labels=cfg.DATASETS.SUPRESS_QUERY if cfg.DATASETS.USE_SUPRESS_QUERY else None,
            cfg=cfg,
        )

        all_queries.append(query_i)
        all_positive_map_label_to_token.append(positive_map_label_to_token_i)
    print("All queries", all_queries)
    return all_queries, all_positive_map_label_to_token

def create_queries_and_maps(labels, label_list, additional_labels=None, cfg=None):

    # Clean label list
    label_list = [clean_name(i) for i in label_list]
    # Form the query and get the mapping
    tokens_positive = []
    start_i = 0
    end_i = 0
    objects_query = ""

    # sep between tokens, follow training
    separation_tokens = cfg.DATASETS.SEPARATION_TOKENS

    caption_prompt = cfg.DATASETS.CAPTION_PROMPT
    if caption_prompt is not None and isinstance(caption_prompt, str):
        caption_prompt = load_from_yaml_file(caption_prompt)
    use_caption_prompt = cfg.DATASETS.USE_CAPTION_PROMPT and caption_prompt is not None
    for _index, label in enumerate(label_list):
        if use_caption_prompt:
            objects_query += caption_prompt[_index]["prefix"]

        start_i = len(objects_query)

        if use_caption_prompt:
            objects_query += caption_prompt[_index]["name"]
        else:
            objects_query += label

        end_i = len(objects_query)
        tokens_positive.append([(start_i, end_i)])  # Every label has a [(start, end)]

        if use_caption_prompt:
            objects_query += caption_prompt[_index]["suffix"]

        if _index != len(label_list) - 1:
            objects_query += separation_tokens

    if additional_labels is not None:
        objects_query += separation_tokens
        for _index, label in enumerate(additional_labels):
            objects_query += label
            if _index != len(additional_labels) - 1:
                objects_query += separation_tokens

    print(objects_query)

    from transformers import AutoTokenizer

    # tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
        tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        tokenized = tokenizer(objects_query, return_tensors="pt")
    elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "roberta-base":
        tokenizer = AutoTokenizer.from_pretrained("roberta-base")
        tokenized = tokenizer(objects_query, return_tensors="pt")
    elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
        from transformers import CLIPTokenizerFast

        if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
            tokenizer = CLIPTokenizerFast.from_pretrained(
                "openai/clip-vit-base-patch32", from_slow=True, mask_token="ðŁĴij</w>"
            )
        else:
            tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32", from_slow=True)
        tokenized = tokenizer(
            objects_query, max_length=cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN, truncation=True, return_tensors="pt"
        )
    else:
        tokenizer = None
        raise NotImplementedError

    # Create the mapping between tokenized sentence and the original label
    # if one_hot:
    #     positive_map_token_to_label, positive_map_label_to_token = create_one_hot_dict(labels, no_minus_one_for_one_hot=cfg.DATASETS.NO_MINUS_ONE_FOR_ONE_HOT)
    # else:
    positive_map_token_to_label, positive_map_label_to_token = create_positive_dict(
        tokenized, tokens_positive, labels=labels
    )  # from token position to original label
    return objects_query, positive_map_label_to_token


def create_positive_map_label_to_token_from_positive_map(positive_map, plus=0):
    positive_map_label_to_token = {}
    for i in range(len(positive_map)):
        positive_map_label_to_token[i + plus] = torch.nonzero(positive_map[i], as_tuple=True)[0].tolist()
    return positive_map_label_to_token


def _accumulate_predictions_from_multiple_gpus(predictions_per_gpu):
    all_predictions = all_gather(predictions_per_gpu)
    if not is_main_process():
        return
    # merge the list of dicts
    predictions = {}
    for p in all_predictions:
        predictions.update(p)
    # convert a dict where the key is the index in a list
    image_ids = list(sorted(predictions.keys()))
    if len(image_ids) != image_ids[-1] + 1:
        logger = logging.getLogger("maskrcnn_benchmark.inference")
        logger.warning(
            "Number of images that were gathered from multiple processes is not "
            "a contiguous set. Some images might be missing from the evaluation"
        )

    # convert to a list
    predictions = [predictions[i] for i in image_ids]
    return predictions


def resize_box(output, targets):
    if isinstance(targets[0], dict):
        orig_target_sizes = targets[0]["orig_size"].unsqueeze(0)
    else:
        orig_target_sizes = torch.stack([targets[0].extra_fields["orig_size"] for _ in range(1)], dim=0)
    img_h, img_w = orig_target_sizes.unbind(1)
    return output.resize((img_w, img_h))


def flickr_post_process(output, targets, positive_map_label_to_token, plus):
    raw_boxes = deepcopy(output.bbox)
    output = resize_box(output, targets)
    scores, indices = torch.topk(output.extra_fields["scores"], k=len(output.extra_fields["scores"]), sorted=True)
    boxes = output.bbox.tolist()
    boxes = [boxes[i] for i in indices]
    labels = [output.extra_fields["labels"][i] for i in indices]
    output_boxes = [[] for i in range(len(positive_map_label_to_token))]
    output_scores = [[] for i in range(len(positive_map_label_to_token))]
    for i in range(len(boxes)):
        output_boxes[labels[i] - plus].append(boxes[i])
        output_scores[labels[i] - plus].append(scores[i])
    for i in output_boxes:
        i.append([0.0, 0.0, 0.0, 0.0])
    image_ids = [t.extra_fields["original_img_id"] for t in targets]
    sentence_ids = [t.extra_fields["sentence_id"] for t in targets]

    return {"image_id": image_ids[0], "sentence_id": sentence_ids[0], "boxes": output_boxes, "scores": output_scores, "raw_boxes": raw_boxes}

def post_process(dataset_name, output, targets, positive_map_label_to_token, plus, categories = None, captions = None):
    '''

    Transfer the output from the model to appropriate formats for evaluation

    '''
    if "flickr" in dataset_name:
        output = output[0]
        raw_boxes = deepcopy(output.bbox)
        new_output = flickr_post_process(
            output, targets, positive_map_label_to_token, plus  # This is only used in Flickr
        )
        visualization_output = (
            new_output["image_id"], 
            {
                "boxes": new_output["boxes"], 
                "scores": new_output["scores"],
                "raw_boxes": raw_boxes,
                }
            )
    elif "lvis" in dataset_name:
        output = output[0]
        raw_boxes = deepcopy(output.bbox)
        output = resize_box(output, targets)
        scores = output.extra_fields["scores"]
        labels = output.extra_fields["labels"]
        boxes = output.bbox
        new_output = (targets[0]["image_id"].item(), {"scores": scores, "labels": labels, "boxes": boxes, "raw_boxes": raw_boxes, "labels_text": [categories[cat_id.item()] for cat_id in labels]})
        visualization_output = new_output[1]
    elif "refcoco" in dataset_name:
        output = output[0]
        output = resize_box(output, targets)
        scores = output.extra_fields["scores"]
        boxes = output.bbox
        image_id = [t.extra_fields["image_id"] for t in targets][0].item()
        new_output = {image_id: {"scores": scores, "boxes": boxes}}
        visualization_output = {"scores": scores, "boxes": boxes}
    else:
        new_output = output
        visualization_output = output
    return new_output, visualization_output

def process_for_vis(dataset_name, image_ids, visualization_outputs):
    '''

    Transfer the output from the model to appropriate formats for visualization

    '''
    if "lvis" in dataset_name:
        assert(len(image_ids) == 1)
        # merge the visualization_outputs
        visualization_output = {}
        for key in visualization_outputs[0].keys():
            if key == "labels_text":
                _labels_text = [v[key] for v in visualization_outputs]
                visualization_output[key] = [item for sublist in _labels_text for item in sublist]
            else:
                visualization_output[key] = torch.cat([v[key] for v in visualization_outputs], dim=0)
        visualization_output = [(image_ids[0], visualization_output)] #
    return visualization_output

def write_to_wandb_log(score, dataset_name, weight_iter, history):
    all_results = defaultdict(dict)
    exclude_keys = ['_step', '_runtime', '_timestamp']
    if history is not None:
        for stat in history:
           all_results[stat['_step']].update({k: v for k, v in stat.items() if k not in exclude_keys})
    if "lvis" in dataset_name.lower():
        mAP_all = float(score[0].split("Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets= -1 catIds=all] = ")[-1])
        mAP_rare = float(score[6].split("Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets= -1 catIds=  r] = ")[-1])
        mAP_common = float(score[7].split("Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets= -1 catIds=  c] = ")[-1])
        mAP_frequent = float(score[8].split("Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets= -1 catIds=  f] = ")[-1])
        #wandb.log({f"{dataset_name}_mAP_all": mAP_all, f"{dataset_name}_mAP_rare": mAP_rare, f"{dataset_name}_mAP_common": mAP_common, f"{dataset_name}_mAP_frequent": mAP_frequent},  step = weight_iter)
        all_results[weight_iter].update({f"{dataset_name}_mAP_all": mAP_all, f"{dataset_name}_mAP_rare": mAP_rare, f"{dataset_name}_mAP_common": mAP_common, f"{dataset_name}_mAP_frequent": mAP_frequent})
    elif "flickr" in dataset_name.lower():
        recall_1 = score["Recall@1_all"]
        recall_5 = score["Recall@5_all"]
        recall_10 = score["Recall@10_all"]
        # wandb.log(
        #     {f"{dataset_name}_recall@1": recall_1, f"{dataset_name}_recall@5": recall_5, f"{dataset_name}_recall@10": recall_10}, step = weight_iter
        # )
        all_results[weight_iter].update({f"{dataset_name}_recall@1": recall_1, f"{dataset_name}_recall@5": recall_5, f"{dataset_name}_recall@10": recall_10})
    elif "coco" in dataset_name.lower():
        all_results[weight_iter].update({f"{dataset_name}_mAP": score[0].results['bbox']['AP']})
    
    # sort all results 
    max_key = max(all_results.keys())
    for i in range(max_key + 1):
        if i in all_results:
            wandb.log(all_results[i], step = i)
        else:
            wandb.log({}, step = i)
    # for k in sorted(all_results.keys()):
    #     # need to do consecutive logging
    #     wandb.log(all_results[k], step = k)


def build_flickr_evaluator(cfg):
    evaluator = FlickrEvaluator(
        "DATASET/flickr30k/flickr30k/",  # Hard written!!
        subset="test" if "test" in cfg.DATASETS.TEST[0] else "val",
        merge_boxes=cfg.DATASETS.FLICKR_GT_TYPE == "merged",
    )
    return evaluator


def build_refexp_evaluator(dataset):
    from maskrcnn_benchmark.data.datasets.refexp import RefExpDataset

    evaluator = RefExpEvaluator(dataset.coco, ("bbox"))
    return evaluator


def build_lvis_evaluator(ann_file, topk, fixed_ap=True):
    from maskrcnn_benchmark.data.datasets.evaluation.lvis.lvis import LVIS
    from maskrcnn_benchmark.data.datasets.evaluation.lvis.lvis_eval import LvisEvaluatorFixedAP, LvisEvaluator
    evaluator = LvisEvaluatorFixedAP(LVIS(ann_file), topk = topk, fixed_ap=fixed_ap) # topk
    #evaluator = LvisEvaluator(LVIS(ann_file), iou_types=['segm', 'bbox'])
    return evaluator


def write_lvis_results(results, output_file_name):
    if isinstance(results, dict):
        output_file_name = output_file_name.replace("bbox.csv", "coco_results.pth")
        torch.save(results, output_file_name)
        return

    lines = []
    lines.append("metric, avg ")
    for each_result in results:
        metric_string = " ".join(each_result.split(" ")[:-2])
        number = each_result.split(" ")[-1]
        each_result = metric_string + ", " + number + " "
        lines.append(each_result)

    string_to_write = "\n".join(lines) + "\n"
    with open(output_file_name, "w") as f:
        f.write(string_to_write)
    return


def write_flickr_results(results, output_file_name):
    lines = []
    lines.append("metric, avg ")
    for each_metric, number in results.items():
        each_result = each_metric + ", " + str(number) + " "
        lines.append(each_result)

    string_to_write = "\n".join(lines) + "\n"
    with open(output_file_name, "w") as f:
        f.write(string_to_write)
    return


def write_refexp_results(results, output_file_name):
    lines = []
    lines.append("metric, avg ")
    for each_metric, recall_list in results.items():
        for i, recall in zip(
            [1, 5, 10],
            recall_list,
        ):
            each_result = each_metric + ": " + f"Recall@{i} = " + str(recall) + " "
            lines.append(each_result)

    string_to_write = "\n".join(lines) + "\n"
    with open(output_file_name, "w") as f:
        f.write(string_to_write)
    return


def inference(

    model,

    data_loader,

    dataset_name,

    iou_types=("bbox",),

    box_only=False,

    device="cuda",

    expected_results=(),

    expected_results_sigma_tol=4,

    output_folder=None,

    cfg=None,

    verbose=True,

    weight_iter = None,

    wandb_run=None,

    history=None

):
    # convert to a torch.device for efficiency
    try:
        device = torch.device(device)
    except:
        device = device
    num_devices = torch.distributed.get_world_size() if torch.distributed.is_initialized() else 1
    logger = logging.getLogger("maskrcnn_benchmark.inference")
    dataset = data_loader.dataset
    if verbose:
        logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset)))
    start_time = time.time()

    task = cfg.TEST.EVAL_TASK

    if not task:
        return inference_default(
            model,
            data_loader,
            dataset_name,
            iou_types,
            box_only,
            device,
            expected_results,
            expected_results_sigma_tol,
            output_folder,
            cfg,
        )

    if task == "detection":
        if "description" in cfg.DATASETS.OD_TO_GROUNDING_VERSION:
            try:
                descriptions = dataset.lvis.dataset["categories"]
            except:
                descriptions = dataset.coco.dataset["categories"]
            od_grounding_converter = DescriptionConverter(
                cfg.DATASETS.DESCRIPTION_FILE,
                cfg.DATASETS.OD_TO_GROUNDING_VERSION,
                descriptions,
                dataset.categories()) # the last parameters is a bit ad-hoc
            all_queries, all_positive_map_label_to_token = od_grounding_converter.inference_od_to_grounding(dataset, cfg)
        else:
            all_queries, all_positive_map_label_to_token = create_queries_and_maps_from_dataset(dataset, cfg)
    elif task == "grounding":
        all_queries = [None]
        all_positive_map_label_to_token = [None]
    else:
        assert 0

    """

    Build Dataset Sepecific Evaluator

    """
    if "flickr" in cfg.DATASETS.TEST[0]:
        evaluator = build_flickr_evaluator(cfg)
    elif "lvis" in cfg.DATASETS.TEST[0]:
        evaluator = build_lvis_evaluator(dataset.ann_file, topk=cfg.DATASETS.LVIS_TOPK, fixed_ap=not cfg.DATASETS.LVIS_USE_NORMAL_AP)
    elif "refcoco" in cfg.DATASETS.TEST[0]:
        evaluator = build_refexp_evaluator(dataset)
    else:
        evaluator = None

    model.eval()
    results_dict = {}
    cpu_device = torch.device("cpu")
    if verbose:
        _iterator = tqdm(data_loader)
    else:
        _iterator = data_loader
    # save the visualization results
    max_visualize_num = 1000
    try:
        gold_data_tsv = TSVResultWriter(
            max_visualize_num=max_visualize_num,
            file_name=os.path.join(output_folder, "gold_{}/test.tsv").format(torch.distributed.get_rank() if torch.distributed.is_initialized() else 0,
            write_freq=10)
        )
        prediction_data_tsv = TSVResultWriter(
            max_visualize_num=max_visualize_num,
            file_name=os.path.join(output_folder, "prediction_{}/test.tsv").format(torch.distributed.get_rank() if torch.distributed.is_initialized() else 0),
            write_freq=10)
    except:
        pass


    try:
        categories = dataset.categories()
        raw_categories = dataset.lvis.dataset["categories"]
        raw_categories = {c["id"]: c for c in raw_categories}
    except:
        categories = None
        raw_categories = None
    for i, batch in enumerate(_iterator):
        if i == cfg.TEST.SUBSET:
            break
        images, targets, image_ids, *_ = batch
        try:
            gold_data_tsv.update_gold_od_data(images, targets, raw_categories)
        except:
            pass

        all_output = []
        mdetr_style_output = []
        visualization_outputs = []

        with torch.no_grad():
            if cfg.TEST.USE_MULTISCALE:
                query_time = len(all_queries)
                for query_i in range(query_time):
                    if task == "detection":
                        captions = [all_queries[query_i] for ii in range(len(targets))]
                        positive_map_label_to_token = all_positive_map_label_to_token[query_i]
                    else:
                        captions = None
                        positive_map_label_to_token = None

                output = im_detect_bbox_aug(model, images, device, captions, positive_map_label_to_token)
                output = [o.to(cpu_device) for o in output]
                all_output.append(output)
            else:
                images = images.to(device)
                query_time = len(all_queries)

                output_for_one_image = []
                for query_i in range(query_time):
                    if not isinstance(targets[0], dict):  # For LVIS dataset and datasets directly copied from MDETR
                        targets = [target.to(device) for target in targets]
                    """

                    different datasets seem to have different data format... For LVIS dataset, the target is a dictionary, while for modulatedDataset such as COCO/Flickr, the target is a BoxList

                    """

                    if task == "detection":
                        captions = [all_queries[query_i] for ii in range(len(targets))]
                        positive_map_label_to_token = all_positive_map_label_to_token[query_i]
                        if cfg.MODEL.DYHEAD.FUSE_CONFIG.SPAN_VERSION is not None:
                            positive_map_label_to_token, span_map, spans = positive_map_label_to_token
                            spans = [spans] # Let's just use one image per batch
                        else:
                            span_map = None
                            spans = None
                    elif task == "grounding":
                        captions = [t.get_field("caption") for t in targets]
                        positive_map_eval = [
                            t.get_field("positive_map_eval")
                            if t.has_field("positive_map_eval")
                            else t.get_field("positive_map")
                            for t in targets
                        ]
                        if cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
                            plus = 1
                        else:
                            plus = 0
                        assert len(positive_map_eval) == 1  # Let's just use one image per batch
                        positive_map_eval = positive_map_eval[0]
                        positive_map_label_to_token = create_positive_map_label_to_token_from_positive_map(
                            positive_map_eval, plus=plus
                        )
                        span_map = None
                        spans = None
                    output = model(images, captions=captions, positive_map=positive_map_label_to_token, spans = spans, span_map=span_map)
                    if cfg.TEST.CHUNK_INFERENCE_VERSION == "v2":
                        assert(len(output) == 1)
                        output_for_one_image.append(output[0])
                    else:
                        output = [o.to(cpu_device) for o in output]
                        if cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
                            plus = 1
                        else:
                            plus = 0
                        output, visualization_output = post_process(
                            cfg.DATASETS.TEST[0],
                            output, targets, positive_map_label_to_token, plus=plus, categories=categories, captions=captions)
                        if evaluator is not None:
                            mdetr_style_output.append(output)
                        else:
                            all_output.append(output)
                        visualization_outputs.append(visualization_output)
                    
                    if cfg.TEST.CHUNK_INFERENCE_VERSION == "v2":
                        # merge boxes
                        output = cat_boxlist(output_for_one_image)
                        output = model.rpn.box_selector_test.select_over_all_levels([output])
                        output = [o.to(cpu_device) for o in output]
                        if cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
                            plus = 1
                        else:
                            plus = 0
                        output, visualization_output = post_process(
                            output, targets, positive_map_label_to_token, plus=plus, categories=categories,)
                        
                        if evaluator is not None:
                            mdetr_style_output.append(output)
                        else:
                            all_output.append(output)
                        visualization_outputs.append(visualization_output)


        try:
            prediction_data_tsv.update(images, process_for_vis(cfg.DATASETS.TEST[0], image_ids, visualization_outputs)) # write the prediction data to tsv file
        except:
            pass
        
        if evaluator is not None:
            try:
                evaluator.update(mdetr_style_output)
            except:
                evaluator.update(mdetr_style_output[0])
        else:
            output = [[row[_i] for row in all_output] for _i in range(len(all_output[0]))]
            for index, i in enumerate(output):
                output[index] = i[0].concate_box_list(i)

            results_dict.update({img_id: result for img_id, result in zip(image_ids, output)})

    if evaluator is not None:
        evaluator.synchronize_between_processes()
        try:
            evaluator.accumulate()
        except:
            print("Evaluator has no accumulation, skipped...")
        
        try:
            score, results_processed = evaluator.summarize()
            pprint(results_processed)
        except:
            score = evaluator.summarize()
            results_processed = None
        
        if is_main_process():
            if wandb_run is not None:
                #
                dataset_name = cfg.DATASETS.TEST[0]
                write_to_wandb_log(score, dataset_name, weight_iter, history)
                
                with open("{}/detailed.json".format(output_folder), "w") as f:
                    json.dump(results_processed, f)
                wandb_run.save("{}/detailed.json".format(output_folder))
        
        pprint(score)
        import maskrcnn_benchmark.utils.mdetr_dist as dist
        if is_main_process():
            if "flickr" in cfg.DATASETS.TEST[0]:
                write_flickr_results(score, output_file_name=os.path.join(output_folder, "bbox.csv"))
            elif "lvis" in cfg.DATASETS.TEST[0]:
                write_lvis_results(score, output_file_name=os.path.join(output_folder, "bbox.csv"))
            elif "refcoco" in cfg.DATASETS.TEST[0] and output_folder is not None:
                write_refexp_results(score, output_file_name=os.path.join(output_folder, "Recall_results.csv"))
        try:
            torch.distributed.barrier()
        except:
            print("Default process group is not initialized")
        return

    if evaluator is not None:
        predictions = mdetr_style_output
    else:
        predictions = results_dict
    # wait for all processes to complete before measuring the time
    synchronize()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=total_time))
    logger.info(
        "Total inference time: {} ({} s / img per device, on {} devices)".format(
            total_time_str, total_time * num_devices / len(dataset), num_devices
        )
    )

    predictions = _accumulate_predictions_from_multiple_gpus(predictions)
    print("Accumulated results")
    if not is_main_process():
        return None

    if output_folder:
        torch.save(predictions, os.path.join(output_folder, "predictions.pth"))

    extra_args = dict(
        box_only=box_only,
        iou_types=iou_types,
        expected_results=expected_results,
        expected_results_sigma_tol=expected_results_sigma_tol,
    )
    results = evaluate(dataset=dataset, predictions=predictions, output_folder=output_folder, **extra_args)
    
    if is_main_process():
        if wandb_run is not None:
            dataset_name = cfg.DATASETS.TEST[0]
            write_to_wandb_log(results, dataset_name, weight_iter, history)
    return results