Spaces:
Sleeping
Sleeping
File size: 9,583 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
r"""
Basic training script for PyTorch
"""
# Set up custom environment before nearly anything else is imported
# NOTE: this should be the first import (no not reorder)
from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip
import argparse
import os
import torch
from maskrcnn_benchmark.config import cfg, try_to_find
from maskrcnn_benchmark.data import make_data_loader
from maskrcnn_benchmark.solver import make_lr_scheduler
from maskrcnn_benchmark.solver import make_optimizer
from maskrcnn_benchmark.engine.inference import inference
from maskrcnn_benchmark.engine.trainer import do_train
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.utils.collect_env import collect_env_info
from maskrcnn_benchmark.utils.comm import get_world_size, all_gather, is_main_process, broadcast_data, get_rank, synchronize
from maskrcnn_benchmark.utils.imports import import_file
from maskrcnn_benchmark.utils.logger import setup_logger
from maskrcnn_benchmark.utils.metric_logger import MetricLogger, TensorboardLogger
from maskrcnn_benchmark.utils.miscellaneous import mkdir, save_config
import numpy as np
import random
import pdb, wandb
from maskrcnn_benchmark.utils.amp import autocast, GradScaler
def train(cfg, local_rank, distributed, use_tensorboard=False, use_wandb=False):
model = build_detection_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
if cfg.MODEL.BACKBONE.RESET_BN:
for name, param in model.named_buffers():
if "running_mean" in name:
torch.nn.init.constant_(param, 0)
if "running_var" in name:
torch.nn.init.constant_(param, 1)
if cfg.SOLVER.GRAD_CLIP > 0:
clip_value = cfg.SOLVER.GRAD_CLIP
for p in filter(lambda p: p.grad is not None, model.parameters()):
p.register_hook(lambda grad: torch.clamp(grad, -clip_value, clip_value))
data_loader = make_data_loader(
cfg,
is_train=True,
is_distributed=distributed,
start_iter=0, # <TODO> Sample data from resume is disabled, due to the conflict with max_epoch
)
if cfg.TEST.DURING_TRAINING or cfg.SOLVER.USE_AUTOSTEP:
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
data_loaders_val = data_loaders_val[0]
else:
data_loaders_val = None
if cfg.MODEL.BACKBONE.FREEZE:
for p in model.backbone.body.parameters():
p.requires_grad = False
if cfg.MODEL.LANGUAGE_BACKBONE.FREEZE:
print("LANGUAGE_BACKBONE FROZEN.")
for p in model.language_backbone.body.parameters():
p.requires_grad = False
if cfg.MODEL.FPN.FREEZE:
for p in model.backbone.fpn.parameters():
p.requires_grad = False
if cfg.MODEL.RPN.FREEZE:
for p in model.rpn.parameters():
p.requires_grad = False
# if cfg.SOLVER.PROMPT_PROBING_LEVEL != -1:
# if cfg.SOLVER.PROMPT_PROBING_LEVEL == 1:
# for p in model.parameters():
# p.requires_grad = False
# for p in model.language_backbone.body.parameters():
# p.requires_grad = True
# for name, p in model.named_parameters():
# if p.requires_grad:
# print(name, " : Not Frozen")
# else:
# print(name, " : Frozen")
# else:
# assert(0)
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[local_rank],
output_device=local_rank,
broadcast_buffers=cfg.MODEL.BACKBONE.USE_BN,
find_unused_parameters=cfg.SOLVER.FIND_UNUSED_PARAMETERS,
)
arguments = {}
arguments["iteration"] = 0
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(cfg, model, optimizer, scheduler, output_dir, save_to_disk)
extra_checkpoint_data = checkpointer.load(try_to_find(cfg.MODEL.WEIGHT), skip_scheduler = cfg.SOLVER.RESUME_SKIP_SCHEDULE)
arguments.update(extra_checkpoint_data)
# For full model finetuning
# arguments["iteration"] = 0
# optimizer = make_optimizer(cfg, model)
# scheduler = make_lr_scheduler(cfg, optimizer)
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
if use_tensorboard:
meters = TensorboardLogger(log_dir=cfg.OUTPUT_DIR, start_iter=arguments["iteration"], delimiter=" ")
else:
meters = MetricLogger(delimiter=" ")
do_train(
cfg,
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
data_loaders_val,
meters,
use_wandb = use_wandb
)
return model
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"--use-tensorboard",
dest="use_tensorboard",
help="Use tensorboardX logger (Requires tensorboardX installed)",
action="store_true",
default=False,
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
parser.add_argument("--save_original_config", action="store_true")
parser.add_argument("--disable_output_distributed", action="store_true")
parser.add_argument("--debug_nan_checkpoint", default=None)
parser.add_argument("--override_output_dir", default=None)
parser.add_argument("--wandb_name", default="__test__")
parser.add_argument("--use_wandb", action="store_true")
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
import datetime
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://", timeout=datetime.timedelta(0, 7200))
if args.disable_output_distributed:
setup_for_distributed(args.local_rank <= 0)
cfg.local_rank = args.local_rank
cfg.num_gpus = num_gpus
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
# specify output dir for models
cfg.OUTPUT_DIR = "OUTPUTS/" + args.wandb_name
if is_main_process():
mkdir(cfg.OUTPUT_DIR)
if args.wandb_name != "__test__" and args.use_wandb:
if is_main_process():
run = wandb.init(
project = 'lang_det',
job_type = 'train_model',
name = args.wandb_name,
)
with open(os.path.join(cfg.OUTPUT_DIR, 'wandb_run_id.txt'), 'w') as f:
f.write(run.id)
if args.override_output_dir:
cfg.OUTPUT_DIR = args.override_output_dir
cfg.freeze()
seed = cfg.SOLVER.SEED + args.local_rank
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info(args)
logger.info("Using {} GPUs".format(num_gpus))
# logger.info("Collecting env info (might take some time)")
# logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
output_config_path = os.path.join(cfg.OUTPUT_DIR, 'config.yml')
logger.info("Saving config into: {}".format(output_config_path))
# save overloaded model config in the output directory
if args.save_original_config:
import shutil
shutil.copy(args.config_file, os.path.join(cfg.OUTPUT_DIR, "config_original.yml"))
save_config(cfg, output_config_path)
model = train(
cfg=cfg,
local_rank=args.local_rank,
distributed=args.distributed,
use_tensorboard=args.use_tensorboard,
use_wandb=args.wandb_name != "__test__" and args.use_wandb)
if __name__ == "__main__":
main()
|