Spaces:
Sleeping
Sleeping
File size: 9,331 Bytes
749745d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
from collections import OrderedDict, defaultdict
import logging
import math
import torch
from maskrcnn_benchmark.utils.imports import import_file
def resize_2d(posemb, shape_new):
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
ntok_new = shape_new[0]
gs_old = int(math.sqrt(len(posemb))) # 2 * w - 1
gs_new = int(math.sqrt(ntok_new)) # 2 * w - 1
posemb_grid = posemb.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = torch.nn.functional.interpolate(posemb_grid, size=(gs_new, gs_new), mode="bilinear")
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(gs_new * gs_new, -1)
return posemb_grid
def align_and_update_state_dicts(
model_state_dict, loaded_state_dict, reshape_keys=["pos_bias_table"], use_weightmap=False
):
"""
Strategy: suppose that the models that we will create will have prefixes appended
to each of its keys, for example due to an extra level of nesting that the original
pre-trained weights from ImageNet won't contain. For example, model.state_dict()
might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains
res2.conv1.weight. We thus want to match both parameters together.
For that, we look for each model weight, look among all loaded keys if there is one
that is a suffix of the current weight name, and use it if that's the case.
If multiple matches exist, take the one with longest size
of the corresponding name. For example, for the same model as before, the pretrained
weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case,
we want to match backbone[0].body.conv1.weight to conv1.weight, and
backbone[0].body.res2.conv1.weight to res2.conv1.weight.
"""
current_keys = sorted(list(model_state_dict.keys()))
new_loaded_state_dict = dict()
for key in loaded_state_dict.keys():
new_loaded_state_dict[key.replace("text_transformer.", "").replace("vit_model.", "")] = loaded_state_dict[key]
loaded_state_dict = new_loaded_state_dict
loaded_keys = sorted(list(loaded_state_dict.keys()))
# get a matrix of string matches, where each (i, j) entry correspond to the size of the
# loaded_key string, if it matches
match_matrix = [len(j) if i.endswith(j) else 0 for i in current_keys for j in loaded_keys]
match_matrix = torch.as_tensor(match_matrix).view(len(current_keys), len(loaded_keys))
max_match_size, idxs = match_matrix.max(1)
# remove indices that correspond to no-match
idxs[max_match_size == 0] = -1
matched_keys = []
# used for logging
max_size = max([len(key) for key in current_keys]) if current_keys else 1
max_size_loaded = max([len(key) for key in loaded_keys]) if loaded_keys else 1
log_str_template = "{: <{}} loaded from {: <{}} of shape {}"
logger = logging.getLogger(__name__)
for idx_new, idx_old in enumerate(idxs.tolist()):
if idx_old == -1:
continue
key = current_keys[idx_new]
key_old = loaded_keys[idx_old]
if model_state_dict[key].shape != loaded_state_dict[key_old].shape:
if any([k in key_old for k in reshape_keys]):
new_shape = model_state_dict[key].shape
logger.warning("Reshaping {} -> {}. \n".format(key_old, key))
model_state_dict[key] = resize_2d(loaded_state_dict[key_old], new_shape)
elif use_weightmap and "cls_logits" in key:
coco_in_objects365_inds = [
227,
26,
55,
202,
2,
44,
338,
346,
32,
336,
118,
299,
218,
25,
361,
59,
95,
161,
278,
82,
110,
22,
364,
134,
9,
350,
152,
323,
304,
130,
285,
289,
16,
172,
17,
18,
283,
305,
321,
35,
362,
88,
127,
174,
292,
37,
11,
6,
267,
212,
41,
58,
162,
237,
98,
48,
63,
81,
247,
23,
94,
326,
349,
178,
203,
259,
171,
60,
198,
213,
325,
282,
258,
33,
71,
353,
273,
318,
148,
330,
]
logger.info(
"Use coco_in_objects365_inds labelmap for COCO detection because of size mis-match, "
"Reshaping {} -> {}. \n".format(key_old, key)
)
new_shape = model_state_dict[key].shape
assert new_shape[0] == len(coco_in_objects365_inds)
weight_inds_old = torch.as_tensor(coco_in_objects365_inds).to(loaded_state_dict[key_old].device)
model_state_dict[key] = loaded_state_dict[key_old][weight_inds_old].to(model_state_dict[key].device)
else:
logger.info("Skip due to size mismatch: {} -> {}. \n".format(key_old, key))
continue
else:
model_state_dict[key] = loaded_state_dict[key_old]
matched_keys.append(key)
logger.info(
log_str_template.format(
key,
max_size,
key_old,
max_size_loaded,
tuple(loaded_state_dict[key_old].shape),
)
)
missing_keys = set(current_keys) - set(matched_keys)
if len(missing_keys):
groups = _group_checkpoint_keys(missing_keys)
msg_per_group = sorted(k + _group_to_str(v) for k, v in groups.items())
msg = "\n".join(sorted(msg_per_group))
logger.warning("Some layers unloaded with pre-trained weight: \n" + msg)
def strip_prefix_if_present(state_dict, prefix):
keys = sorted(state_dict.keys())
if not all(key.startswith(prefix) for key in keys):
return state_dict
stripped_state_dict = OrderedDict()
for key, value in state_dict.items():
stripped_state_dict[key.replace(prefix, "", 1)] = value
return stripped_state_dict
def load_state_dict(model, loaded_state_dict):
model_state_dict = model.state_dict()
# if the state_dict comes from a model that was wrapped in a
# DataParallel or DistributedDataParallel during serialization,
# remove the "module" prefix before performing the matching
if "state_dict" in loaded_state_dict:
loaded_state_dict = loaded_state_dict["state_dict"]
loaded_state_dict = strip_prefix_if_present(loaded_state_dict, prefix="module.")
align_and_update_state_dicts(model_state_dict, loaded_state_dict)
# use strict loading
model.load_state_dict(model_state_dict)
def _group_checkpoint_keys(keys):
"""
Group keys based on common prefixes. A prefix is the string up to the final
"." in each key.
Args:
keys (list[str]): list of parameter names, i.e. keys in the model
checkpoint dict.
Returns:
dict[list]: keys with common prefixes are grouped into lists.
"""
groups = defaultdict(list)
for key in keys:
pos = key.rfind(".")
if pos >= 0:
head, tail = key[:pos], [key[pos + 1 :]]
else:
head, tail = key, []
groups[head].extend(tail)
return groups
def _group_to_str(group):
"""
Format a group of parameter name suffixes into a loggable string.
Args:
group (list[str]): list of parameter name suffixes.
Returns:
str: formated string.
"""
if len(group) == 0:
return ""
if len(group) == 1:
return "." + group[0]
return ".{" + ", ".join(sorted(group)) + "}"
|