File size: 16,028 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
import torch.distributed as dist
import time
from torchvision.ops import nms
import random
import numpy as np
from PIL import Image, ImageDraw
import pdb
from maskrcnn_benchmark.structures.bounding_box import BoxList
from .modulated_coco import ConvertCocoPolysToMask
from .tsv import ODTSVDataset, TSVYamlDataset
from .od_to_grounding import sanity_check_target_after_processing
from maskrcnn_benchmark.data.datasets._caption_aug import CaptionAugmentation
from collections import defaultdict

class CaptionTSV(TSVYamlDataset):
    def __init__(

        self,

        yaml_file,

        transforms,

        return_tokens,

        return_masks,

        tokenizer,

        caption_min_box=1,

        replace_clean_label=False,

        further_screen=False,

        caption_conf=0.5,

        caption_nms=-1,

        pack_random_caption_number=0,

        inference_caption=False,

        sample_negative_for_grounding_data=-1,

        random_pack_prob=-1.0,

        no_random_pack_probability=0.0,

        safeguard_positive_caption=True,

        mlm_obj_for_only_positive=False,

        caption_format_version="v1",

        local_debug=False,

        max_query_len=256,

        cc_caption_augmentation_version=None,

        caption_vocab_file=None,

        **kwargs

    ):
        super(CaptionTSV, self).__init__(yaml_file, None, replace_clean_label)
        self.yaml_file = yaml_file
        self._transforms = transforms
        self.max_query_len = 225
        self.prepare = ConvertCocoPolysToMask(
            return_masks=return_masks, return_tokens=return_tokens, tokenizer=tokenizer, max_query_len=max_query_len
        )
        self.tokenizer = tokenizer
        self.caption_min_box = caption_min_box
        self.replace_clean_label = replace_clean_label
        self.further_screen = further_screen
        self.pack_random_caption_number = pack_random_caption_number
        self.caption_format_version = caption_format_version

        self.caption_conf = caption_conf
        self.caption_nms = caption_nms
        self.inference_caption = inference_caption
        self.sample_negative_for_grounding_data = sample_negative_for_grounding_data
        self.random_pack_prob = random_pack_prob
        self.no_random_pack_probability = no_random_pack_probability
        self.safeguard_positive_caption = safeguard_positive_caption
        self.mlm_obj_for_only_positive = mlm_obj_for_only_positive
        try:
            self.rank = dist.get_rank()
        except:
            self.rank = 0
        self.caption_augmentation_version = cc_caption_augmentation_version
        if self.caption_augmentation_version is not None:
            self.caption_augmentation = CaptionAugmentation(
                self.caption_augmentation_version,
                tokenizer,
                caption_vocab_file=caption_vocab_file
            )

    def __len__(self):
        return super(CaptionTSV, self).__len__()

    def pack_caption(self, positive_caption, negative_captions, original_tokens_positive):
        if len(negative_captions) == 0:
            return positive_caption, original_tokens_positive, [(0, len(positive_caption))]
        if self.safeguard_positive_caption:
            length_of_each_caption = []
            for caption in negative_captions + [positive_caption]:
                tokenized = self.tokenizer(caption, return_tensors="pt")
                length_of_each_caption.append(tokenized.input_ids.size(-1))
            max_length = self.max_query_len - length_of_each_caption[-1]
            indexes = list(range(len(negative_captions)))
            random.shuffle(indexes)
            new_caption_list = [positive_caption]
            for i in indexes:
                if length_of_each_caption[i] < max_length:
                    new_caption_list.append(negative_captions[i])
                    max_length -= length_of_each_caption[i]
        else:
            new_caption_list = [positive_caption] + negative_captions
        random.shuffle(new_caption_list)

        new_caption = ""

        for i in new_caption_list:
            if i == positive_caption:
                start_position = len(new_caption)
            new_caption += i
            if not i.endswith("."):
                new_caption += "."
            new_caption += " "

        # shift the token positions the boxes are aligned to
        for index, i in enumerate(original_tokens_positive):
            original_tokens_positive[index] = [tuple(j) for j in i]
        for i in original_tokens_positive:
            for index, j in enumerate(i):
                i[index] = (j[0] + start_position, j[1] + start_position)

        return new_caption, original_tokens_positive, [(start_position, start_position + len(positive_caption))]

    def __get_negative_captions__(self, idx, negative_size=7):
        negative_captions = []
        for i in range(negative_size):
            img, anno, _, scale = super(CaptionTSV, self).__getitem__(np.random.choice(len(self)))
            caption = anno["caption"]
            negative_captions.append(caption)

        return negative_captions

    def target_transpose_in(self, anno):
            # for the target from "caption", we need to transpose to box format
            new_target = []
            for box in range(len(anno["bboxes"])):
                new_box = {}
                new_box["tokens_positive"] = anno["tokens_positive"][box]
                new_box["nouns"] = anno["all_nounds_in_vocab"][box]
                new_box["bbox"] = anno["bboxes"][box]
                new_target.append(new_box)
            return new_target

    def target_transpose_out(self, target):
        # for the target from "caption", we need to transpose to box format
        new_target = defaultdict(list)

        for box in target:
            new_target["bboxes"].append(box["bbox"])
            new_target["tokens_positive"].append(box["tokens_positive"])
            if "spans_positive" in box:
                new_target["spans_positive"].append(box["spans_positive"])
        return new_target

    def __getitem__(self, idx):
        try:
            img, anno, _, scale = super(CaptionTSV, self).__getitem__(idx)
            if self.inference_caption:
                caption = None
                if isinstance(anno, list):
                    caption = anno[0]["caption"]  # inference mode for bing
                    anno = []
                elif len(anno) == 1:
                    caption = anno["caption"]  # inference mode for googlecc
                    anno = []
                else:
                    caption = " ".join(anno["captions"])
                    anno = []
            else:
                """

                An example

                {'img_h': 1154, 'img_w': 1600, 'caption': 'xxx', 'tokens_positive': [[[47, 50], [51, 53], [54, 59]], [[32, 35], [36, 41]], [[32, 35], [36, 41]], [[0, 3], [3, 6], [6, 10], [11, 16], [17, 19], [20, 23]], [[32, 35], [36, 41]], [[32, 35], [36, 41]]], 'bboxes': [[7.344961166381836, 10.479412078857422, 1592.2679443359375, 1090.0028076171875], [950.32861328125, 346.572021484375, 1333.2373046875, 679.3215942382812], [927.44140625, 342.7712707519531, 1389.833984375, 719.5758666992188], [90.48786163330078, 363.67572021484375, 1381.8631591796875, 1078.687744140625], [122.84217071533203, 422.6786193847656, 507.845703125, 667.2651977539062], [80.62384033203125, 416.500244140625, 563.1666259765625, 734.603271484375]], 'scores': [0.7966700196266174, 0.8952182531356812, 0.8186006546020508, 0.9995516538619995, 0.8021856546401978, 0.8923134803771973]}

                """
                if len(anno["bboxes"]) < self.caption_min_box:  # Retry triggered!
                    return self[np.random.choice(len(self))]
                if self.caption_format_version == "v2":
                    anno = self.convert_anno_from_v2_to_v1(anno)

                if self.further_screen:
                    conf = self.caption_conf
                    nms_thre = self.caption_nms

                    bboxes = torch.as_tensor(anno["bboxes"]).float()
                    scores = torch.as_tensor(anno["scores"])
                    tokens_positive = anno["tokens_positive"]
                    if "all_nounds_in_vocab" in anno:
                        all_nounds_in_vocab = anno["all_nounds_in_vocab"]
                    else:
                        all_nounds_in_vocab = []
                    # print("\n\n\n\n tokens_positive in original data", tokens_positive)

                    keep = scores > conf
                    scores = scores[keep]
                    bboxes = bboxes[keep]
                    tokens_positive = [i for index, i in enumerate(tokens_positive) if keep[index]]
                    all_nounds_in_vocab = [i for index, i in enumerate(all_nounds_in_vocab) if keep[index]]

                    assert len(tokens_positive) == len(bboxes) == len(scores)

                    if len(bboxes) < self.caption_min_box:  # Retry triggered!
                        return self[np.random.choice(len(self))]

                    if nms_thre > 0:
                        keep = nms(boxes=bboxes, scores=scores, iou_threshold=nms_thre)
                        scores = scores[keep]
                        bboxes = bboxes[keep]
                        tokens_positive = [tokens_positive[i] for i in keep]
                        assert len(tokens_positive) == len(bboxes) == len(scores)

                    # Write back
                    anno["bboxes"] = bboxes.tolist()
                    anno["scores"] = scores.tolist()
                    anno["tokens_positive"] = tokens_positive
                    anno["all_nounds_in_vocab"] = all_nounds_in_vocab

                if len(anno["bboxes"]) < self.caption_min_box:  # Retry triggered!
                    return self[np.random.choice(len(self))]

                if self.caption_augmentation_version is not None:
                    caption, new_anno, spans = self.caption_augmentation(
                        anno["caption"],
                        self.target_transpose_in(anno),
                        gpt3_outputs = anno.get("gpt3_outputs", None))
                    anno.update(self.target_transpose_out(new_anno))
                    anno["caption"] = caption
                    do_neg_aug = False
                else:
                    do_neg_aug = True
                    spans = None

                boxes = torch.as_tensor(anno["bboxes"])
                caption = anno["caption"]
                target = BoxList(boxes, (anno["img_w"], anno["img_h"]), mode="xyxy")
                target = target.clip_to_image(remove_empty=True)
                if spans is not None:
                    target.add_field("spans", spans) # add spans to target
                #pdb.set_trace()
                # print("original caption", caption)
                empty_everything = False
                if self.sample_negative_for_grounding_data != -1:
                    if random.random() < self.sample_negative_for_grounding_data:
                        empty_everything = True

                if empty_everything:
                    caption = self.__get_negative_captions__(idx, negative_size=1)[0]

                if self.pack_random_caption_number != 0 and do_neg_aug:
                    if self.random_pack_prob != -1.0:
                        if random.random() < self.no_random_pack_probability:
                            negative_pack_number = 0
                        elif random.random() < self.random_pack_prob:
                            negative_pack_number = self.pack_random_caption_number
                        else:
                            negative_pack_number = np.random.choice(self.pack_random_caption_number)
                    else:
                        negative_pack_number = self.pack_random_caption_number

                    negative_captions = self.__get_negative_captions__(idx, negative_size=negative_pack_number)

                    caption, anno["tokens_positive"], greenlight_span_for_masked_lm_objective = self.pack_caption(
                        caption, negative_captions, anno["tokens_positive"]
                    )
                else:
                    greenlight_span_for_masked_lm_objective = [(0, len(caption))]

                if not self.mlm_obj_for_only_positive:
                    greenlight_span_for_masked_lm_objective = [(0, len(caption))]

                new_anno = []
                areas = target.area()
                for i in range(len(target)):
                    new_anno_i = {}
                    new_anno_i["area"] = areas[i]
                    new_anno_i["iscrowd"] = 0
                    new_anno_i["image_id"] = idx
                    new_anno_i["category_id"] = 1  # following vg and others
                    new_anno_i["id"] = None
                    new_anno_i["bbox"] = target.bbox[i].numpy().tolist()
                    new_anno_i["tokens_positive"] = anno["tokens_positive"][i]
                    if "spans_positive" in anno:
                        new_anno_i["spans_positive"] = anno["spans_positive"][i]
                    new_anno.append(new_anno_i)

                # except:
                #     return self[np.random.choice(len(self))]

                anno = new_anno
                if empty_everything:
                    anno = []

            annotations = {"image_id": idx, "annotations": anno, "caption": caption}
            annotations["greenlight_span_for_masked_lm_objective"] = greenlight_span_for_masked_lm_objective
            if "spans" in target.extra_fields:
                annotations["spans"] = target.extra_fields["spans"]
                if not isinstance(annotations["spans"], list):
                    annotations["spans"] = annotations["spans"].tolist()
            img, annotations = self.prepare(img, annotations, box_format="xyxy")
            if self._transforms is not None:
                img, target = self._transforms(img, target)

            # add additional property
            for ann in annotations:
                target.add_field(ann, annotations[ann])
        except:
            print("Outter Retry triggered!!")
            return self[np.random.choice(len(self))]

        return img, target, idx

    def convert_anno_from_v2_to_v1(self, anno):
        flatterned_bboxes = []
        flatterned_tokens_positive = []
        flatterned_bboxes_scores = []
        flatterned_nouns = []
        for i in range(len(anno["bboxes"])):
            # i is the index for entity
            for j in range(len(anno["bboxes"][i])):
                # j is the index for each box
                flatterned_bboxes.append(anno["bboxes"][i][j])
                flatterned_tokens_positive.append(
                    anno["tokens_positive"][i]
                )  # Assume this box corresponds to all the token_spans for this entity
                if "all_nounds_in_vocab" in anno:
                    flatterned_nouns.append(anno["all_nounds_in_vocab"][i])
                flatterned_bboxes_scores.append(anno["scores"][i][j])
        anno["bboxes"] = flatterned_bboxes
        anno["tokens_positive"] = flatterned_tokens_positive
        anno["scores"] = flatterned_bboxes_scores
        if "all_nounds_in_vocab" in anno:
            anno["all_nounds_in_vocab"] = flatterned_nouns
        return anno

    def get_raw_image(self, idx):
        image, *_ = super(CaptionTSV, self).__getitem__(idx)
        return image

    def get_img_id(self, idx):
        line_no = self.get_line_no(idx)
        if self.label_tsv is not None:
            row = self.label_tsv.seek(line_no)
            img_id = row[0]
            return img_id