File size: 4,888 Bytes
749745d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Set up custom environment before nearly anything else is imported
# NOTE: this should be the first import (no not reorder)
from maskrcnn_benchmark.utils.env import setup_environment  # noqa F401 isort:skip

import argparse
import os

import torch
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.data import make_data_loader
from maskrcnn_benchmark.engine.inference import inference
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.utils.collect_env import collect_env_info
from maskrcnn_benchmark.utils.comm import synchronize, get_rank
from maskrcnn_benchmark.utils.logger import setup_logger
from maskrcnn_benchmark.utils.miscellaneous import mkdir
from maskrcnn_benchmark.utils.stats import get_model_complexity_info


def run_test(cfg, model, distributed, log_dir):
    if distributed and hasattr(model, "module"):
        model = model.module
    torch.cuda.empty_cache()  # TODO check if it helps
    iou_types = ("bbox",)
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm",)
    if cfg.MODEL.KEYPOINT_ON:
        iou_types = iou_types + ("keypoints",)
    dataset_names = cfg.DATASETS.TEST
    if isinstance(dataset_names[0], (list, tuple)):
        dataset_names = [dataset for group in dataset_names for dataset in group]
    output_folders = [None] * len(dataset_names)
    if log_dir:
        for idx, dataset_name in enumerate(dataset_names):
            output_folder = os.path.join(log_dir, "inference", dataset_name)
            mkdir(output_folder)
            output_folders[idx] = output_folder
    data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
    for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val):
        inference(
            model,
            data_loader_val,
            dataset_name=dataset_name,
            iou_types=iou_types,
            box_only=cfg.MODEL.RPN_ONLY and (cfg.MODEL.RPN_ARCHITECTURE == "RPN" or cfg.DATASETS.CLASS_AGNOSTIC),
            device=cfg.MODEL.DEVICE,
            expected_results=cfg.TEST.EXPECTED_RESULTS,
            expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
            output_folder=output_folder,
            cfg=cfg,
        )
        synchronize()


def main():
    parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference")
    parser.add_argument(
        "--config-file",
        default="/private/home/fmassa/github/detectron.pytorch_v2/configs/e2e_faster_rcnn_R_50_C4_1x_caffe2.yaml",
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument(
        "--weight",
        default=None,
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    distributed = num_gpus > 1

    if distributed:
        torch.cuda.set_device(args.local_rank)
        torch.distributed.init_process_group(backend="nccl", init_method="env://")

    cfg.local_rank = args.local_rank
    cfg.num_gpus = num_gpus

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    log_dir = cfg.OUTPUT_DIR
    if args.weight:
        log_dir = os.path.join(log_dir, "eval", os.path.splitext(os.path.basename(args.weight))[0])
    if log_dir:
        mkdir(log_dir)
    logger = setup_logger("maskrcnn_benchmark", log_dir, get_rank())
    logger.info(args)
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(cfg)

    logger.info("Collecting env info (might take some time)")
    logger.info("\n" + collect_env_info())

    model = build_detection_model(cfg)
    model.to(cfg.MODEL.DEVICE)

    params, flops = get_model_complexity_info(
        model,
        (3, cfg.INPUT.MAX_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST),
        input_constructor=lambda x: {"images": [torch.rand(x).cuda()]},
    )
    print("FLOPs: {}, #Parameter: {}".format(params, flops))

    checkpointer = DetectronCheckpointer(cfg, model, save_dir=cfg.OUTPUT_DIR)
    if args.weight:
        _ = checkpointer.load(args.weight, force=True)
    else:
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

    run_test(cfg, model, distributed, log_dir)
    logger.info("FLOPs: {}, #Parameter: {}".format(params, flops))


if __name__ == "__main__":
    main()